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SUMMARY

DNA methylation at the fifth position of cytosine
(5mC) is an important epigeneticmodification that af-
fects chromatin structure and gene expression.
Recent studies have established a critical function
of the Ten-eleven translocation (Tet) family of pro-
teins in regulating DNA methylation dynamics. Three
Tet genes have been identified in mammals, and
they all encode for proteins capable of oxidizing
5mC as part of the DNA demethylation process.
Although regulation of Tet expression at the tran-
scriptional level is well documented, how TET pro-
teins are regulated at posttranslational level is poorly
understood. In this study, we report that all three TET
proteins are direct substrates of calpains, a family of
calcium-dependent proteases. Specifically, calpain1
mediates TET1 and TET2 turnover in mouse ESCs,
and calpain2 regulates TET3 level during differen-
tiation. This study provides evidence that TET pro-
teins are subject to calpain-mediated degradation.
INTRODUCTION

The ten-eleven translocation (Tet) family of proteins was initially

described when the gene encoding the founding member TET1

was identified as a fusion partner of the mixed lineage leukemia

(MLL) gene in acute myeloid leukemia (Ono et al., 2002). Howev-

er, TET proteins were not at a central stage until they were found

to oxidize 5mC to 5-hydroymethylcytosine (5hmC) as part of the

DNA demethylation process (Ito et al., 2010; Tahiliani et al.,

2009). Subsequent studies demonstrated that TET proteins

further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carboxyl-

cytosine (5caC), which are removed through base excision

repair, thus completing the demethylation process (He et al.,

2011; Ito et al., 2011). Expressions of TET proteins are tightly

regulated at the transcriptional level. For example, in mouse

embryonic stem cells (mESCs) both Tet1 and Tet2 are positively

regulated by Oct4, and their mRNA levels decrease dramatically

upon mESC differentiation. In contrast, Tet3 is significantly

upregulated during differentiation (Koh et al., 2011). In addition
to transcription, two recent studies reported that microRNA

(miR-22) regulates Tet mRNA in leukemia and breast cancers

(Song et al., 2013a, 2013b). However, regulation of TET proteins

at the posttranslational level is less understood. One recent

study suggests that IDAX and CXXC5 interact with TET2 and

regulate its stability through caspase-dependent degradation

(Ko et al., 2013). It is not clear whether TET1 and TET3 are

subjected to a similar regulation.

Four major proteolytic systems mediate protein turnover:

proteasome, lysosome, caspase, and calpain. Proteasomes

are best known for degrading proteins that are modified by

polyubiquitylation (Glickman and Ciechanover, 2002); Lyso-

somes mediate the bulk breakdown of proteins or organelles

(Pan et al., 2008); caspases are a family of cysteine proteases

involved in proteins cleavage during programmed cell death

(Cohen, 1997). Finally, calpains are a family of calcium-depen-

dent cysteine proteases with 14 members identified in human

(Storr et al., 2011). So far, calpain1 and calpain2 (m- and

m-calpains, respectively) are the best characterized members.

Known substrates for calpain include structural proteins,

signaling molecules and transcriptional factors (Suzuki et al.,

2004). Dysregulation of calpains have been linked to a number

of human diseases such as muscular dystrophy, diabetes, and

Alzheimer’s disease (Zatz and Starling, 2005). Moreover,

calpains have been implicated in stem cell maintenance and

differentiation (Santos et al., 2012; Yajima and Kawashima,

2002). Because of the ubiquitous expression pattern and large

number of family members, novel calpain substrates and bio-

logical functions of calpain-mediated protein cleavage have yet

to be identified.

In this study, we took advantage of the various chemical

inhibitors for different protein turnover pathways and identified

calpains as major players that mediate TET protein turnover.

We then use a well-established protocol to differentiate mESC

toward neural progenitor cells (NPCs) to demonstrate that

calpain1 and calpain2 are responsible for TET protein turnover

in ESCs and NPCs, respectively.

RESULTS

Posttranslational Regulation of TET Proteins
The three Tet genes have distinct expression profiles, whereas

Tet1 and Tet2 are downregulated during ESC differentiation,
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Figure 1. Regulation of TET Protein Levels by Transcription and Protein Stability

(A) qRT-PCR analysis of Tet mRNA levels during mESC to NPC differentiation. Although Tet1 and Tet2 levels decrease during differentiation, Tet3 level is

significantly upregulated. Data represent the mean of three independent experiments ±SD, and Tet levels in mESCs are set as 1.

(B and C) Representative western blot (B) and quantification of three repeats ±SD (C) demonstrate that TET protein levels generally follow mRNA levels during

NPC differentiation.

(D and E) Representative western blot analysis of TET1 and TET2 levels in mESCs treated with chloroquine, calpeptin, Z-VAD-FAM, and MG132 for 24 hr.

Quantification of three independent experiments ±SD was shown in (E).

(F and G) Calpeptin increases the half-life of FLAG-TET2 protein. Western blot (F) and quantification (G) of the FLAG-TET2 levels in the presence or absence of

calpeptin upon inhibition of protein translation by cycloheximide.

(H and I) Representativewestern blot analysis of TET3 in day 7 embryoid body (EB) treatedwith chloroquine, calpeptin, Z-VAD-FAM, andMG132 for 24 hr, and the

results were quantified in (I).

(J) Calpain activity is detectable in mESCs and during their differentiation. Western blot analysis of mESC lysate with a spectrin antibody identified both full-length

(arrow) and cleaved spectrin (*), a marker for calpain activity. Spectrin cleavage is detectable during mESC differentiation (lanes 4 and 5) and was prevented by

calpeptin treatment (compare lane 1 and 2).
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Tet3 is upregulated in the same process (Koh et al., 2011). To

systematically examine the relationship between TET mRNA

and protein levels, we utilized an embryonic body (EB)-based

protocol to differentiate mESC into NPCs (Figure S1A) (Bibel

et al., 2007). Successful differentiation was verified by significant
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upregulation of the neural marker Nestin (Figure S1B). We then

examined TET expression change during differentiation by

quantitative RT-PCR (qRT-PCR) and western blot. We found

that although both Tet1 and Tet2 are downregulated during

mESC differentiation, Tet3 is upregulated (Figure 1A). Western



Figure 2. Tet Proteins Are Direct Substrates

of calpain1 and calpain2

(A and B) Representative western blot analysis

(A) and quantification of three independent

repeats ±SD (B) demonstrate that exogenously

expressed TET protein levels can be reduced by

coexpression of calpain1 or calpain2 in 293T cells.

(C) Western blot analysis demonstrates that both

calpain1 and calpain2 can cleave all three Tet

proteins in vitro. Purified FLAG-Tet1, Tet2, and

Tet3 were incubated with buffer alone or purified

FLAG-calpain1 or calpain2 at room temperature

for 30 min before western blot analysis with

FLAG antibody. asterisk, cleaved products; arrow,

full-length TET; arrowhead, calpains.

(D and E) qRT-PCR (D) and western blot (E)

analysis demonstrate that calpain1 and calpain2

are reversely expressed in mESCs and NPCs.

Data represent the mean of three independent

experiments ±SD, and value from mESC is

normalized as 1.

(F) Western blot analysis demonstrates that both

TET1 and TET2 levels are increased in calpain1

knockout mESCs, whereas calpain2 knockout

has little effect. Calpain1 and calpain2 knockout

mESC were generated by CRISPR.

(G)Western blot analysis of the TET3 levels in day 8

EB demonstrates calpain2 knockout increases

TET3 levels, whereas the effect of calpain1

knockout is modest.

(H) Quantification of three independent experi-

ments (F and G), value in WT cells is set as 1, and

error bars represent SD.
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blot analysis revealed that TET protein levels correlate with

mRNA levels (Figures 1B and 1C), suggesting TET expression

is largely controlled at the transcription level. Nevertheless,

the rapid protein turnover of TET1 and TET2 between EB

days 2 and 6 suggests a possible posttranslational regulation.

To explore this possibility, we analyzed the effect of various

proteolytic pathways on TET protein turnover by focusing on

ESCs for TET1 and TET2, and EB day 8 for TET3. We treated

cells with inhibitors of the four major proteolytic pathways: pro-

teasome (MG132), lysosome (chloroquine), calpain (calpeptin),

and caspase (Z-VAD-FMK) and found that calpeptin treatment

induced the most significant accumulation of TET1 and TET2

proteins, and a less prominent effect was observed by inhibiting

caspase. However, no significant effect was observed when

treated with lysosome or proteasome inhibitors (Figures 1D

and 1E). We confirmed the effectiveness of MG132 as well as

chloroquine (Figures S1C and S1D). Thus, lysosome and protea-

some are not essential for TET protein turnover.

To further evaluate the role of calpeptin in stabilizing TET

proteins, we attempted to determine the half-life of TET by

cycloheximide treatment that blocks protein synthesis. Because

mESCs are sensitive to cycloheximide, we expressed TET2

in 293T cells and then treated the cells with cycloheximide.

We found that calpeptin extended TET2 half-life from 10 to

16 hr (Figures 1F and 1G), supporting a role of calpains in

TET2 degradation. In addition to mESCs, we also analyzed the
effect of the various proteolysis pathways on TET3 stability

in EBs and observed a similar effect by calpeptin treatment

(Figures 1H and 1I).

The above results suggest that calpains are likely responsible

for TET turnover. Next, we examined calpain activity in mESC

and EBs by monitoring the cleavage of spectrin, a well-charac-

terized calpain substrate (Czogalla and Sikorski, 2005). Western

blot analysis of EB day 6 and day 8 lysates clearly showed a

lower band matching cleaved spectrin, which disappeared

following calpeptin treatment (Figure 1J), suggesting calpain

activity is present in both self-renewing and differentiated

mESC. Collectively, the above results suggest that calpain-

mediated proteolysis play a role in regulating TET protein

stability, and caspases may also contribute to this process.

Because the role of caspases has been recently reported

(Ko et al., 2013), we focus our study on calpain-mediated regu-

lation of TET proteins.

Tet Proteins Are Direct Substrates of Calpains
To directly address the role of calpains in regulating TET stability,

we asked whether exogenously expressed TET2 can be down-

regulated by coexpression of calpain1 or calpain2, two of the

best characterized calpains. As shown in Figures 2A and 2B,

TET levels are significantly decreased by coexpression of

either calpain1 or calpain2. To examine if calpains directly cleave

TET proteins, we performed calpain cleavage assays in vitro
Cell Reports 6, 1–7, January 30, 2014 ª2014 The Authors 3
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using purified calpain1, calpain2, and three TET proteins. Results

shown in Figure 2C demonstrate that all three TET proteins are

efficiently cleaved by both calpain1 and calpain2. The variable

sizes of the cleavage products (Figures 2C and S2A) suggest

multiple cleavages sites. The proteolytic activity of calpain1

and calpain2 is not due to contaminating proteases because

neither calpain1 nor calpain2 cleaved RNF4 under the same

conditions (Figure S2C).

To test if calpain1 and calpain2 regulate TET protein stability

in vivo, we analyzed the expression profiles of calpain1 and cal-

pain2 during mESC differentiation. qRT-PCR analysis indicated

that calpain1 level is relatively high in mESCs, whereas calpain2

is mainly expressed in NPCs (Figures 2D and 2E). Considering

Tet expression profiles (Figure 1A), we hypothesize that calpain1

mainly regulates TET1 and TET2 stability in mESCs, whereas

calpain2 regulates TET3 during differentiation. To test this

possibility, we utilized the CRISPR-based genome editing

technology (Cong et al., 2013; Mali et al., 2013) and generated

calpain1 and calpain2 knockout mESCs (Figure S2D). Targeting

sequences were designed against exons of the N-terminal part

of the transcript (Figure S2D), and no off-target was identified

based on the established criteria (Hsu et al., 2013). The geno-

types were determined by DNA sequencing. A clone with

frameshifts on both alleles is chosen and further confirmed by

western blot analysis (Figures 2F and 2G). As expected, both

TET1 and TET2 levels are increased in calpain1 knockout

mESC compared to control (Figure 2F). Due to a low calpain2

level in mESCs, the effect of calpain2 knockout is less apparent

(Figure 2F). However, when the knockout mESCs are induced

to differentiate, significant increase in TET3 levels is observed

in calpain2�/� EBs, which is less apparent in calpain1�/� cells

(Figure 2G). The observed effect is likely mediated at the protein

level as Tet mRNA level is not significantly altered by calpain

knockout (Figures S2F and S2G). These results strongly suggest

that calpains regulate TET protein levels in vivo and the regula-

tion exhibits isoform and cell differentiation state specificity.

Calpains Regulate TET Functions in mESCMaintenance
and Differentiation
TET proteins play complicated roles in mESCs (Wu and Zhang,

2011). Although Tet1 and Tet2 double knockout results in a

depletion of 5hmC and dysregulation of hundreds of genes,

the mESCs remain pluripotent (Dawlaty et al., 2013). To under-

stand the role of calpain-mediated TET cleavage in mESCs,

we focused on some known functions of TET proteins. Because

calpains functionally antagonize TET proteins, we anticipate

that depletion of calpains and TET proteins result in opposite

phenotypes. Similar to Tet1/2 double knockout, calpain1�/�

or calpain2�/� mESCs exhibit typical mESC morphology (Fig-

ure S2E), and no obvious defect in self-renewal was observed.

Consistently, the levels of the key pluripotency factors, including

Oct4, Sox2, and Nanog, are not significantly altered by calpain

knockout (Figure 3A). Consistent with the report that 5hmC

generation depends on TET1 and TET2 (Dawlaty et al., 2013),

dot-blot analysis revealed a 2-fold increase in 5hmC levels

in calpain1�/� mESCs, whereas calpain2�/� had little effect

(Figures 3B and 3C). This result is consistent with the fact that

calpain1, but not calpain2, is expressed in mESCs and regulates
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TET1/2 protein levels (Figure 2F). Although not affecting pluripo-

tency, knockdown of Tet in mESCs does affect the expression

of lineage-specific transcription factors. For example, trophecto-

derm marker Cdx2 and Eomes are significantly upregulated

in Tet1 knockdown cells, whereas expression of other markers

such as Lefty1 is decreased (Ito et al., 2010; Koh et al., 2011).

We confirmed this observation and importantly obtained an

opposite effect in calpain1�/� mESCs presumably due to the

stabilization of TET1 proteins (Figure 3D). To rule out the

possibility that the gene expression change in calpain1�/� cells

is caused by other calpain1 substrates, we knocked down

Tet1 in calpain1�/� mESCs, and the expression profiles of these

genes were reversed (Figures 3D and S3D). These data suggest

that although calpain1 knockout does not affect mESC mainte-

nance, it affects 5hmC generation and lineage-specific gene

expression in a way opposite to Tet1 knockdown, consistent

with a role of calpain1 in regulating TET1 and TET2 stability.

Because calpain2 regulates TET3 levels in EB differentiation

(Figure 2G), we next analyzed the biological relevance of this

enzyme-substrate pair during mESC differentiation. TET3 plays

an important role in regulating expression of some neural tran-

scription factors such as Pax6 and Ngn2 during neurogenesis

in Xenopus (Xu et al., 2012). To test if this mechanism is

conserved in mammals, we generated Tet3�/� mESC with a

published CRISPR guiding sequence (Figure S3A) (Wang et al.,

2013). Clones carrying frameshifts on both alleles were selected.

Consistent with previous report (Wang et al., 2013), Tet3

knockout does not affect mESC morphology or self-renewal

(Figure S3B). EB-based differentiation followed by qRT-PCR

analysis demonstrated that the expression levels of Pax6 and

Ngn2 were significantly reduced in Tet3 knockout mESCs (Fig-

ure 3E), suggesting a functional conservation of Tet3 between

Xenopus and mammals. Importantly, both Pax6 and Ngn2

are upregulated in calpain2�/� EBs, and small hairpin RNA

(shRNA)-mediated Tet3 knockdown in calpain2�/� cells abol-

ished this upregulation (Figures 3E and S3E). However, manipu-

lation of calpain2 or Tet3 does not affect the expression of

other neuronal marker genes, such as b3-tubulin (Figure 3E).

This suggests that, although calpain2 and TET3 affect the ex-

pression of certain neural genes, they are not master regulators

that drive differentiation from mESCs to NPCs.

EBs are composed of a mixed cell population that includes

nonneural lineage cells. To study the effect of calpain2 and

TET3 on differentiation efficiency from mESCs to NPCs, we dis-

associated EBs and switched to monolayer culture in chemically

defined N2 medium, which enrich NPCs by eliminating none

NPCs and intermediates. The surviving cells showed typical

bipolar NPC morphology and were positive for Nestin and Sox2

(Figure 3F). Although NPCs were successfully generated from

all four groups of cells, the yield differs significantly (Figure 3G).

The increased NPC differentiation efficiency in calpain2�/�

mESCs is likely due to the increase in TET3 levels as Tet3

knockdown in calpain2�/� cells suppressed NPC generation

(Figure 3G). This result suggests that calpain2-mediated degra-

dation of TET3 modulate neuronal gene expression program

and the efficiency of in vitro neural differentiation. Upregulation

of calpain2 during NPC differentiation may be part of a negative

feedback mechanism that prevents hyperactivation of Tet3.



Figure 3. Effects of Calpain-Mediated TET

Cleavage on Gene Expression and NPC

Differentiation

(A) qRT-PCR analysis demonstrates that calpain1

or calpain2 knockout in mESCs does not affect

pluripotent gene expression. Data represent the

mean of three independent experiments ±SD, and

value in WT mESC is set as 1.

(B and C) Dot-blot analysis (B) and densitometry

quantification of three repeats (C) demonstrate

that calpain1 knockout, but not calpain2, in-

creased 5hmC levels in mESCs.

(D) qRT-PCR analysis demonstrates that Tet1

knockdown in mESC enhances trophectoderm

lineage genes (Cdx2 and Eomes) expression and

inhibits Lefty1. Knockout of calpain1 opposes this

tendency, which is rescued by Tet1 knockdown.

Data represent the mean of three independent

experiments ±SD, and value in WT mESC is

set as 1.

(E) qRT-PCR analysis demonstrates that during

differentiation to NPC (EB day 8), Tet3 knockout

significantly reduces the expression of neuronal

markers Ngn2 and Pax6, whereas calpain2

knockout enhanced their expression, which is

reversed by Tet3 knockdown. In contrast, b3-

tubulin expression is not affected by either Tet3

or calpain2. Value in WT EB is set as 1, and error

bars represent SD.

(F) Immunostaining demonstrates generation of

Nestin and Sox2 double-positive NPCs. After

EB disassociation and a 48 hr adherent culture,

Nestin- andSox2-positive NPCswere successfully

generated from all WT and knockout cells.

(G) TET3 and calpain2 have opposite effect on mESC differentiation to NPC. Although Tet3�/� significantly reduced NPC generation, CAPN2�/� enhanced the

differentiation efficiency, which is abolished by Tet3 knockdown. Number from WT cells is normalized to 1. Error bars represent SD; *p < 0.05; **p < 0.01.
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DISCUSSION

In this study, we provide evidence that TET proteins are direct

substrates of calpains. Specifically, calpain1 modulates TET1

and TET2 levels in mESCs, whereas calpain2 promotes TET3

turnover during neural differentiation. Calpain-mediated regu-

lation of TET proteins is physiologically relevant, given that it

affects global 5hmC level and expression of certain lineage-

specific genes in mESCs, as well as mESC differentiation.

Cell differentiation is a highly orchestrated process with dy-

namic proteomic changes as unwanted proteins are degraded.

The importance of major proteolytic systems including protea-

some, caspase, calpain, and lysosome has been implicated in

cell differentiation (Buckley et al., 2012; Fujita et al., 2008;

Guan et al., 2013). Utilizing inhibitors against these proteolytic

systems, we identified calpains as important regulators of TET

protein turnover (Figures 1D–1I). We also observed a modest

effect by inhibiting caspase (Figures 1D and 1E), which is con-

sistent with a recent report (Ko et al., 2013). In fact, calpain

and caspase are proteases that share many properties and

substrates (Wang, 2000). Although we focused on calpains in

this study, the relative contribution of calpain and caspase in

regulating TET protein turnover remains to be determined. It

worth noting that whereas we observed an effect of calpains

and caspases on TET turnover, no obvious effect was detected
by inhibiting proteasomes, indicating that the ubiquitylation

pathway does not play a major role in regulating TET protein

turnover.

It is well known that calpain-mediated cleavage can either

result in protein turnover or generate functional truncated pro-

teins. Calpain-mediated TET cleavage likely results in turnover

because TET degradation products observed in vitro (Fig-

ure S2A) were undetectable in mESCs or 293T cells cotrans-

fected with TET2 and calpains, suggesting that the cleaved

TET fragments are unstable and are quickly turned over in vivo.

Moreover, the wide spectrum of TET degradation products

suggests many cleavage sites, making it difficult to generate

mutant TET proteins that are resistant to calpains, which would

otherwise be useful tools in functional studies. However, the

fact that knocking down Tet in calpain�/� cells can rescue

the calpain�/� phenotypes strongly supports the biological

relevance of this enzyme-substrate pair (Figures 3D, 3E, and

3G). In this study, we have tested only two of the bested charac-

terized calpains, and the role of the other 12 calpains in regu-

lating TET stability remains unknown.

Tet protein levels are consistent with their mRNA levels,

suggesting a dominant regulation at the transcriptional level

(Figures 1A and 1B), yet posttranslational mechanism may be

required to fine-tune TET protein level and function. Considering

the large numbers of calpain substrates, and the difficulty in
Cell Reports 6, 1–7, January 30, 2014 ª2014 The Authors 5
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generating calpain-resistant TET mutants, we choose to study

the function of calpain-mediated TET degradation by focusing

on some known TET functions, such as 5hmC generation and

expression of some lineage-specific genes. The opposite effects

from depletion of Tet and calpain, and the observation that Tet

knockdown reverses the phenotypes of calpain knockout (Fig-

ures 3B–3G) strongly support a role of calpain-mediated TET

protein degradation. Given that calpains are calcium-dependent

proteases, studying calpain-Tet in physiological contexts such

as neuron activation is of great relevance. In addition, cancer

cells may prove to be another useful model in understanding

calpain-mediated TET degradation as calpain levels are fre-

quently elevated, whereas TET are downregulated in cancer

cells (Storr et al., 2011; Yang et al., 2013). Our findings provide

mechanistic basis for these future studies.

EXPERIMENTAL PROCEDURES

Differentiation of Neural Progenitors

Experiment was performed as described (Bibel et al., 2007). ESCs (4 3 106)

were plated into nonadherent dish in differentiation medium (ES medium

with 10% fetal bovine serum and no leukemia inhibitory factor) to form

embryoid body. On day 4, 5 mM retinoic acid was applied. On day 8, embryoid

bodies were disassociated and cultured in N2 medium in PORN/laminin-

coated plates.

Knockout Calpains by CRISPR

Design of targeting constructs was described in Hsu et al. (2013). To knock out

calpains, CRISPR constructs were cotransfected with a puromycin resistant

vector. After puromycin selection, single clones were picked, and the geno-

types were determined by sequencing. Clones with frameshifts on both alleles

were selected for further analysis.

In Vitro Calpain Assay

Proteins were exogenously expressed and purified from 293T cells. TET

proteins were incubated with calpain1, calpain2, or elution buffer as control.

CaCl2 (1 mM) was added and the reaction was performed at room temperature

for 30 min before being stopped by adding Laemmli buffer.

More details are available at Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and one table and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2013.12.031.
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M.F., Li, H., Koh, K.P., Lähdesmäki, H., et al. (2013). Modulation of TET2

expression and 5-methylcytosine oxidation by the CXXC domain protein

IDAX. Nature 497, 122–126.

Koh, K.P., Yabuuchi, A., Rao, S., Huang, Y., Cunniff, K., Nardone, J., Laiho, A.,

Tahiliani, M., Sommer, C.A., Mostoslavsky, G., et al. (2011). Tet1 and Tet2

regulate 5-hydroxymethylcytosine production and cell lineage specification

in mouse embryonic stem cells. Cell Stem Cell 8, 200–213.

Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E.,

and Church, G.M. (2013). RNA-guided human genome engineering via Cas9.

Science 339, 823–826.

Ono, R., Taki, T., Taketani, T., Taniwaki, M., Kobayashi, H., and Hayashi, Y.

(2002). LCX, leukemia-associated protein with a CXXC domain, is fused to

MLL in acute myeloid leukemia with trilineage dysplasia having

t(10;11)(q22;q23). Cancer Res. 62, 4075–4080.

Pan, T., Kondo, S., Le,W., and Jankovic, J. (2008). The role of autophagy-lyso-

some pathway in neurodegeneration associated with Parkinson’s disease.

Brain 131, 1969–1978.

Santos, D.M., Xavier, J.M., Morgado, A.L., Solá, S., and Rodrigues, C.M.
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