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Abstract

The importance of eukaryotic DNA methylation [5-methylcytosine
(5mC)] in transcriptional regulation and development was first
suggested almost 40 years ago. However, the molecular mechanism un-
derlying the dynamic nature of this epigenetic mark was not understood
until recently, following the discovery that the TET proteins, a family of
AlkB-like Fe(II)/α-ketoglutarate-dependent dioxygenases, can oxidize
5mC to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine
(5fC), and 5-carboxylcytosine (5caC). Since then, several mechanisms
that are responsible for processing oxidized 5mC derivatives to achieve
DNA demethylation have emerged. Our biochemical understanding
of the DNA demethylation process has prompted new investigations
into the biological functions of DNA demethylation. Characterization
of two additional AlkB family proteins, FTO and ALKBH5, showed
that they possess demethylase activity toward N 6-methyladenosine
(m6A) in RNA, indicating that members of this subfamily of dioxyge-
nases have a general function in demethylating nucleic acids. In this
review, we discuss recent advances in this emerging field, focusing on
the mechanism and function of TET-mediated DNA demethylation.
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INTRODUCTION

Cellular DNA and RNA are subjected to vari-
ous forms of methylation. Methylation has two
forms: damage and modifications. Methylation
damage, such as N 1-methyladenosine (m1A)
and N 3-methylcytosine (m3C), which are
introduced by endogenous or exogenous meth-
ylation agents, is considered cytotoxic and/or
mutagenic through blocking or altering
Watson–Crick base-pairing. Methylation mod-
ifications, notably in the forms of 5-methylcy-
tosine (5mC) in DNA and N 6-methyladenosine
(m6A) in messenger RNA (mRNA), are
generated by S-adenosylmethionine (SAM)-
dependent methyltransferases (for a review, see
References 1 and 2). These modifications do
not interfere with Watson–Crick base-pairing;
instead, they perform important regulatory
functions in mammalian development, and

their dysregulation can lead to various human
diseases, including cancer (3–6).

The AlkB family of Fe(II)/α-ketoglutarate
(αKG)-dependent dioxygenases are important
mediators in mammalian nucleic acid methyl-
ation (7). AlkB is the Escherichia coli prototype
that repairs DNA methylation damage. Hu-
man AlkB homologs, such as ALKBH2 and
ALKBH3, have long been known to repair var-
ious types of methylation damage in DNA and
RNA, guarding the genome from methylation
agents (Figure 1a) (8). Recent studies have
identified members of dioxygenase family that
can modulate DNA and RNA demethylation
in mammalian systems. On the DNA level, the
TET (ten-eleven translocation) family pro-
teins mediate the reversal of 5mC methylation
through iterative oxidation of 5mC to the newly
discovered 5-hydroxymethylcytosine (5hmC),
5-formylcytosine (5fC), and 5-carboxylcytosine
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5caC:
5-carboxylcytosine

TDG: thymine-DNA
glycosylase

BER: base excision
repair

DSBH:
double-stranded
β-helix

(5caC) (9–12). The complete reversal of cy-
tosine methylation can be achieved by either
replication-dependent dilution of 5mC oxida-
tion derivatives or thymine-DNA glycosylase
(TDG)-mediated base excision repair (BER),
a pathway involving removal of the entire
5fC or 5caC base and its subsequent repair to
replace the residue with unmodified cytosine
(Figure 1b) (12–14). On the RNA level, the
human AlkB homologs FTO (fat mass– and
obesity-associated protein) (2) and ALKBH5
(15) participate in removal of the methyl group
of m6A through oxidation (Figure 1c). These
newly identified Fe(II)/αKG-dependent dioxy-
genases and nucleic acid modifications play
pivotal roles in regulating development and
diseases (16–19). This review highlights the
mechanisms and function of the oxidative
reversal of DNA and RNA methylation, which
is mediated by these newly characterized
enzymes. We begin by discussing the current
mechanistic understanding of TET-mediated
DNA demethylation and its regulation. We
then compare methods for the detection
of 5hmC, 5fC, and 5caC and review func-
tions of TET-mediated demethylation in
diverse biological processes. Finally, we briefly
review recent discoveries involving RNA
demethylation.

BIOCHEMICAL AND
MOLECULAR MECHANISMS OF
TET-MEDIATED OXIDATIVE
DNA DEMETHYLATION

Although AlkB family dioxygenases vary sig-
nificantly in terms of domain structure and
function (Figure 2a), their oxidation chem-
istry and catalytic domain are similar to those
of the E. coli prototype AlkB (20). In partic-
ular, all AlkB family dioxygenases use a base-
flipping mechanism to flip their target base out
of the double-stranded DNA (dsDNA) helix
into their catalytic pocket (Figure 2b), and the
core of their catalytic domain contains a double-
stranded β-helix (DSBH) fold that is con-
served among Fe(II)/αKG-dependent dioxy-
genases (Figure 2c). The AlkB homologs and

TET proteins contain the same His–Xaa–Asp–
(Xaa)n–His (where Xaa means any amino acid)
iron-binding motif in the catalytic site for oxy-
gen activation (21).

The oxidation reaction can be split into two
stages: dioxygen activation and substrate oxida-
tion (Figure 2d ). The dioxygen activation stage
is a four-electron process. At this stage, Fe(II)
and αKG may each contribute two electrons to
activate a dioxygen molecule first into bridged
peroxo and then into the Fe(IV)-oxo intermedi-
ate (22). In the subsequent substrate oxidation
stage, the highly active Fe(IV)-oxo species oxi-
dizes the inert C–H bond of the substrate, and
Fe(IV) is reduced back into Fe(II) to complete
the catalytic cycle. Overall, four electrons—
two from αKG and two from the substrate
C–H bond—are consumed to fully reduce a
dioxygen molecule. The two oxygen atoms of
the dioxygen molecule are incorporated into
the succinate (the oxidized and decarboxylated
product of αKG) and the oxidized product
(Figure 2d ).

In the case of N-methylated substrates,
such as m1A and m3C, the initial oxidation
renders the C–N bond unstable and un-
dergoes hydrolytic deformylation, causing
direct demethylation of the methylation dam-
age. However, in the case of C-methylation
substrates, such as 5mC, the oxidized 5-
substituents are connected through a C–C
bond to the rest of the base and are chemically
stable under physiological conditions. In this
case, 5hmC can be further oxidized to generate
5fC and even 5caC. Although 5hmC, 5fC, and
5caC are stable under physiological conditions,
all of them can serve as intermediates for
DNA demethylation, as discussed further in
the section titled Potential Mechanisms of
TET-Mediated DNA Demethylation, below
(Figure 3). Compelling evidence suggests that
replication-dependent passive dilution and
TDG-mediated excision of 5fC and 5caC,
and its subsequent restoration of unmodified
cytosine by BER (for a review of BER, see
Reference 23), may play predominant roles
in completing TET-mediated oxidative DNA
demethylation.
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AML: acute myeloid
leukemia

MLL: mixed-lineage
leukemia

TET Family Dioxygenases
The names of TET genes stem from the in-
volvement of the human TET1 gene in the ten-
eleven translocation [t(10;11)(q22;q23)] in rare
cases of acute myeloid leukemia (AML), which
fuses the TET1 gene on chromosome 10 with
the mixed-lineage leukemia gene (MLL; also
known as KMT2A) on chromosome 11 (24, 25).
Two TET1 paralog genes, TET2 and TET3,
were identified on the basis of sequence homol-
ogy. The three TET genes are conserved in all
jawed vertebrates, suggesting that the ancestral
TET gene underwent a triplication event in the
jawed vertebrate lineage (26, 27).

Recently, the crystal structures of a cat-
alytically active truncated human TET2 and a
Naegleria Tet-like dioxygenase were re-
ported (28, 29). Similar to all characterized
Fe(II)/αKG-dependent dioxygenases, the
TET catalytic domain contains a DSBH fold
(also known as a jelly-roll fold) (9), which
includes eight conserved antiparallel β-strands
(I–VIII) and a conserved iron-binding motif
(Figure 2b,c) (30). In addition to these common
motifs of the DSBH fold, the catalytic domain
of TET proteins also has unique characteristics
including a cysteine-rich domain adjacent to
the N terminus of the DSBH fold and a large,
nonconserved, low-complexity region inserted
between conserved β-strands IV and V (26, 27).
In vitro studies suggest that the cysteine-rich
domain, but not the low-complexity insert,
is essential for the catalytic activity of TET

proteins (30). Indeed, the crystal structure
of TET2 catalytic domain reveals that the
cysteine-rich domain wraps around the DSBH
core and stabilizes the substrate DNA above
it (28). Although the low-complexity insert is
predicted to be unstructured, and no structural
information about this region is available, the
insert in TET1 shows sequence similarity
to the C-terminal domain of Saccharomyces
cerevisiae RNA polymerase II, suggesting a
possible regulatory role of this region (31).

TET1 is also known as CXXC6 (CXXC
zinc finger 6) and LCX (leukemia-associated
CXXC protein) due to the presence of a
CXXC (cysteine–X–X–cysteine) domain (24).
Both TET1 and TET3, but not TET2, con-
tain a CXXC domain at the N terminus. In
vitro DNA-binding analyses and crystal struc-
tures of the Xenopus laevis Tet3 CXXC domain
have revealed that this domain strongly binds to
unmethylated DNA (32). However, the CXXC
domain does not appear to account for all of
the DNA-binding activity of TET proteins,
because catalytic domains of these three TET
proteins—without their CXXC domains—can
still oxidize 5mC DNA in vitro and in vivo (10).
It follows that the catalytic domains of the TET
proteins may possess a non-sequence-specific
DNA-binding capacity similar to that of most
AlkB family proteins (21), whereas the CXXC
domain may increase the sequence selectivity to
facilitate and regulate binding of TET proteins
to their genomic targets (32–34).

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 1
Overview of the oxidative reversal of mammalian DNA and RNA methylation. (a) DNA methylation
damage, such as N 1-methyladenosine (m1A) and N 3-methylcytosine (m3C), can be repaired by the AlkB
family dioxygenases ALKBH2 and ALKBH3 through an unstable hemiaminal intermediate (brackets).
(b) DNA methylation at the 5-position of cytosine is deposited by DNA methyltransferases (DNMTs). The
Fe(II)/α-ketoglutarate (αKG)-dependent dioxygenases TET1, TET2, and TET3 can oxidize
5-methylcytosine (5mC) to the chemically stable intermediates 5-hydroxymethylcytosine (5hmC),
5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) in a stepwise manner. 5mC, 5hmC, 5fC, and 5caC
can be passively converted back to cysteine during DNA replication, when DNMTs fail to methylate the
newly synthesized strand (dashed arrows). In addition, 5fC and 5caC can be excised by thymine-DNA
glycosylase (TDG) and repaired through base excision repair (BER). (c) RNA methylation modification in
the form of N 6-methyladenosine (m6A) is generated from adenine by RNA methyltransferase. The AlkB
family dioxygenases FTO (fat mass– and obesity-associated protein) and ALKBH5 remove the methyl group
of m6A by oxidation. FTO oxidizes m6A to form metastable products of N 6-hydroxymethyladenosine
(hm6A) and N 6-formyladenosine (f 6A), which decompose back to adenosine.
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Figure 2
The structural and chemical basis of methyl oxidation by Fe(II)/α-ketoglutarate (αKG)-dependent dioxygenases. (a) Domain structures
of Escherichia coli AlkB, mouse FTO (fat mass– and obesity-associated protein), ALKBH5, JBPs ( J-binding proteins), and TET
proteins. TET proteins harbor three conserved domains, including the CXXC zinc finger, the cysteine-rich (Cys-rich) domain, and the
double-stranded β-helix (DSBH) fold. (b) Crystal structure of human TET2 catalytic domain with DNA and an αKG analog,
N-oxalylglycine (NOG) (Protein Data Bank identifier 4NM6). The conserved β-strands in the DSBH fold are colored green, the
α-helixes in the DSBH fold are in yellow, the large insert is in gray, and the Cys-rich domain is in brown. The red and gray spheres
represent Fe(II) and Zn(II), respectively. (c) The topology diagram for the conserved DSBH fold. The locations of Fe(II) and the
αKG-binding sites are indicated. (d ) The chemical mechanism underlying Fe(II)/αKG-dependent dioxygenase–mediated 5mC
oxidation. In the dioxygen activation stage, Fe(II) and αKG activate dioxygen to form a highly active Fe(IV)-oxo species. In the
substrate oxidation stage, Fe(IV)-oxo inserts the oxygen atom into the C–H bond of the substrate, and Fe(IV) is reduced back to Fe(II)
to complete the catalytic cycle.

TET-Mediated Iterative Oxidation
of 5-Methylcytosine

The biochemical function of TET proteins
was not known until 2009, when Rao and
colleagues (9) demonstrated that human TET1
can convert 5mC of DNA to 5hmC. This

finding was inspired by an investigation of the
reaction involved in the biosynthesis of base J
(β-D-glucosyl-hydroxymethyluracil), which is
a modified thymine base found in kinetoplastid
genomes. The first step of base J synthesis
involves oxidation of the 5-methyl group on

590 Shen et al.
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5hmU:
5-hydroxymethyluracil

JBP: J-binding
protein

ESCs: embryonic
stem cells

thymine to 5-hydroxymethyluracil (5hmU) by
J-binding proteins 1 and 2 ( JBP1 and JBP2)
(35). Given the structural similarity between
5mC and thymine, mammalian homologs of
JBPs were thought to have the capacity to
oxidize 5mC (27). This possibility was experi-
mentally confirmed; the mammalian homologs
of JBPs—TET proteins—oxidize 5mC to
5hmC (9, 10, 36). Furthermore, the presence
of TET genes in metazoans appears to depend
on the presence of 5mC in the genome (26,
27), supporting the idea that the biochemical
function of TET proteins is 5mC oxidation.
Importantly, these studies were further sup-
ported by the demonstrations that 5hmC is
relatively abundant in Purkinje neurons and
mouse embryonic stem cells (ESCs) and that its
presence is TET protein dependent (9, 10, 37).

Interestingly, further oxidation of 5hmC
was proposed on the basis of the similarity be-
tween the chemistry of 5mC demethylation and
thymine-to-uracil conversion (38). Thymine-
to-uracil conversion is part of the thymidine
salvage pathway and involves three thymine-
7-hydroxylase [an AlkB-like Fe(II)/αKG-
dependent dioxygenase]-catalyzed iterative
oxidation reactions to generate isoorotate,
whose carboxyl group is subsequently removed
by an isoorotate decarboxylase to generate
uracil [thymine → 5hmU → 5-formyluracil →
5-carboxyluracil (isoorotate) → uracil] (39).
Similar to the iterative oxidation of thymine
by thymine-7-hydroxylase, TET proteins can
oxidize 5mC not only to 5hmC, but also to
5fC and 5caC in vitro (11, 12). This activity
is mechanistically supported by the finding
that the active cavity of TET2 recognizes
CpG dinucleotide regardless of its methylation
status. The lack of specific interactions between
the active cavity and the methyl group of 5mC
may allow 5mC oxidation derivatives to be
oxidated further (28). Consistent with this in
vitro activity, 5fC and 5caC can be reliably
detected in mouse ESCs in a TET-dependent
manner, supporting their biological relevance.
However, 5fC and 5caC levels are two orders
of magnitude lower than that of 5hmC in
mouse ESCs (11, 12, 40). With synthetic oligo

C 5mC 5hmC

5hmU

5fC
5caC

DNMTs TETs
TETs

TETs

AID/APOBECs?

BER

Replication-dependent dilution

TDG or SMUG1 

TDG 
TDG 

Decarboxylase? 

AM-AR

AM-PD

DNMTs?

Abasic
sites 

Figure 3
Proposed mechanisms of TET-mediated DNA demethylation. TET proteins
can oxidize 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine
(5hmC), which is recognized poorly by DNA methyltransferase 1 (DNMT1)
and thus can be diluted during DNA replication. 5hmC can also be further
oxidized by TET proteins to produce 5-formylcytosine (5fC) and
5-carboxylcytosine (5caC). Alternatively, 5hmC may be deaminated by AID
and APOBECs to become 5-hydroxymethyluracil (5hmU). 5fC, 5caC, and
5hmU can be excised from DNA by glycosylases. In addition, DNMT3A and
DNMT3B may directly dehydroxymethylate 5hmC to generate cytosine, and a
putative decarboxylase may also directly convert 5caC to cytosine.
TET-catalyzed reactions are colored green, AM-AR (active modification
followed by active restoration) pathways red, and AM-PD (active modification
followed by passive dilution) pathways magenta. Solid lines represent processes
with strong evidence; dashed lines indicate processes that either are
hypothetical or need further verification. Abbreviation: BER, base excision
repair.

substrates, the initial reaction rate of purified
TET2 protein toward 5hmC or 5fC is at least
fivefold lower than that toward 5mC; turnover
numbers of TET2 protein toward 5mC,
5hmC, and 5fC are estimated to be 0.5 min−1,
0.1 min−1, and 0.07 min−1, respectively (11).
These results are consistent with the finding
that 5hmC, 5fC, and 5caC levels in mammalian
genomes are low. Detailed kinetics analyses
of the TET-catalyzed reaction are needed
for an understanding of its processivity and
regulation.

Potential Mechanisms of
TET-Mediated DNA Demethylation

DNA methylation is relatively stable compared
with most histone modifications. Neverthe-
less, DNA demethylation, either passive or
active, has been observed in various biological
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AM-AR: active
modification (AM) of
5mC followed by
active restoration (AR)
of unmodified cytosine

AM-PD: active
modification (AM) of
5mC followed by
replication-dependent
passive dilution (PD)

DNMT: DNA
methyltransferase

PGC: primordial
germ cell

contexts. Passive DNA demethylation refers
to the loss of 5mC during successive rounds
of replication in the absence of functional
DNA methylation maintenance machinery,
and it has been suggested that this term be
used only for replication-dependent dilution
of 5mC, but not its oxidation derivatives,
to avoid confusion (41). In contrast, active
DNA demethylation refers to an enzymatic
process that removes or modifies 5mC with
regeneration of unmodified cytosine. Thus, all
TET-mediated demethylation processes are
best viewed as active DNA demethylation.

Once TET enzymes actively convert 5mC
to 5hmC, 5fC, and 5caC [referred to as
active modification (AM)], this base can be
further processed through either (a) passive
dilution (PD) to regenerate unmodified cy-
tosine through DNA replication or (b) active
restoration (AR) through further enzymatic
modification. An AM-AR pathway may
function rapidly and seems well suited for
locus-specific demethylation that requires a
rapid response to environmental stimuli; how-
ever, an AM-PD pathway may be well suited
for global demethylation events in which DNA
replication takes place (41). To date, at least five
different demethylation pathways involving
TET proteins have been proposed (Figure 3).

The first mechanism is direct removal of the
5-carboxyl group of 5caC by a putative decar-
boxylase (AM-AR). This potential mechanism
is the most straightforward and is mechanisti-
cally similar to the last step of thymine-to-uracil
conversion in the thymidine salvage pathway
(42). Consistent with this possibility, a recent
study detected weak 5caC decarboxylase activ-
ity in mouse ESC extracts (43). However, the
identity of the putative decarboxylase has yet to
be revealed.

The second mechanism is direct removal
of the 5-hydroxymethyl group from 5hmC
(AM-AR). In vitro studies have shown that
mammalian de novo DNA methyltransferases
(DNMTs) 3A and 3B, as well as the bacterial
DNA methyltransferase M.HhaI, can remove
the 5-hydroxymethyl group of 5hmC to
generate unmodified cytosine in the absence

of the methyl donor SAM (44, 45). However,
the biological relevance of this reaction is
questionable, given that SAM is a general
methyl donor of many important biochemical
reactions that take place in all cell types.

The third mechanism is replication-
dependent dilution of 5mC oxidation products
(AM-PD). Previous studies have demonstrated
that DNMT1—the DNMT responsible for
maintaining DNA methylation during DNA
replication—is much less efficient in utilizing
hemihydroxymethylated CpGs (5hmC/C)
substrates versus hemimethylated CpGs
(5mC/C) (46, 47), raising the possibility
that 5mC-to-5hmC conversion can facilitate
replication-dependent DNA demethylation.
Accumulating evidence indicates that, in
addition to passive demethylation (i.e., dilution
of 5mC), AM-PD also plays an important role
in global DNA demethylation during preim-
plantation development and primordial germ
cell (PGC) reprogramming (see the section
titled Biological Functions of TET-Mediated
Oxidation of 5-Methylcytosine, below).

The fourth mechanism is 5hmC deamina-
tion, followed by glycosylation and BER (AM-
AR). One study reported that overexpression
of AID/APOBEC deaminases into HEK293
cells demethylates the cotransfected 5hmC-
containing reporter and generates the deami-
nation product 5hmU (48). This report raises
the possibility that DNA demethylation can be
achieved through sequential actions of TET-
AID/APOBEC-BER. However, this possible
mechanism is challenged by the fact that AID
efficiently acts only on single-stranded DNA
(ssDNA), not on dsDNA (49). Furthermore,
a systematic biochemical study revealed that
AID/APOBEC deaminases have no detectable
deamination activity on 5hmC (50). Never-
theless, a deamination/BER-dependent mech-
anism had previously been proposed for the
removal of 5mC (whose deamination prod-
uct is thymine) in various biological systems,
including zebrafish embryos, mouse PGCs,
and mouse ESC/human fibroblast fused het-
erokaryons (51–54). Thus, deamination-based
DNA demethylation is more likely to act on
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UDG: uracil-DNA
glycosylase

5mC than on 5hmC. Further studies are needed
to clarify the role of AID/APOBEC in DNA
demethylation.

The fifth and final mechanism is that TDG
acts robustly on 5fC and 5caC to generate
abasic sites, which can be repaired through the
BER pathway to restore unmodified cytosine
(AM-AR). As discussed in more detail in
the following section, this is the most plausible
active demethylation pathway, and it has gained
the most support from multiple laboratories
(11–14, 50).

TDG-Mediated Excision of
5-Formylcytosine and
5-Carboxylcytosine

TDG belongs to the uracil-DNA glycosylase
(UDG) superfamily, which uses a base-flipping
mechanism to excise target bases from dsDNA
to initiate BER. The well-established func-
tion of TDG is to remove pyrimidine moi-
ety from guanine/uracil and guanine/thymine
mismatches (55). Interestingly, the substrate
specificity of TDG appears to depend on the
stability of the base–sugar bond (N-glycosidic
bond); TDG also efficiently excises properly
base-paired cytosine bases with 5-position sub-
stituents, such as 5-fluorocytosine, that desta-
bilize the N-glycosidic bond through electronic
effects (56).

Computational analyses indicate that 5fC
and 5caC destabilize the N-glycosidic bond
relative to cytosine, 5mC, 5hmC, and even
5-fluorocytosine (57). TDG can consistently
recognize and excise 5fC and 5caC, but not cy-
tosine, 5mC, and 5hmC, from dsDNA when
paired with guanine (12, 13). In fact, it has
a slightly higher binding affinity toward gua-
nine/5caC and guanine/5fC pairs than to gua-
nine/uracil and guanine/thymine mismatches
(13). Co-overexpression of TDG with TET
proteins in HEK293 cells depletes TET-
generated 5fC and 5caC (12, 50), whereas
knockdown of TDG leads to a 5–10-fold in-
crease of 5fC and 5caC in mouse ESCs (12, 58,
59), confirming the 5fC/5caC base-removal ac-
tivity of TDG.

The crystal structure of human TDG
in complex with 5caC-containing dsDNA
clearly shows that, compared with the other
UDGs [i.e., UNG, methyl-CpG-binding do-
main protein 4 (MBD4), and single-strand-
selective monofunctional uracil-DNA glyco-
sylase 1 (SMUG1)], the active site of TDG
is uniquely configured to accommodate 5caC
and facilitate its cleavage (14). One of the ma-
jor functions of TDG in mammals is probably
to recognize and excise 5fC and 5caC in the
genome. Consistent with this idea is the finding
that TDG is the only UDG protein required
during mouse embryonic development (60–63).
Tdg-knockout mice exhibit developmental de-
fects and die around embryonic day (E)12.5 (60,
61). Importantly, the DNA glycosylase activity
of TDG is essential for embryonic development
because the Tdg catalytic mutant has the same
phenotype as the Tdg null mutant (60). Thus,
the unique 5fC and 5caC excision activity of
TDG may be essential for DNA demethylation
during embryonic development.

REGULATION OF OXIDATIVE
DNA DEMETHYLATION

DNA methylation carries cell type– and de-
velopmental stage–specific epigenetic informa-
tion that is critical to the maintenance of
proper gene transcription and genome stabil-
ity. Therefore, both DNA methylation and
demethylation must be precisely controlled
to avoid dysregulation of gene expression.
Although the regulation of DNA methylation
has been extensively studied (1, 64), how DNA
demethylation is regulated is only beginning to
be understood.

Regulation of TET Expression

The three TET proteins exhibit developmen-
tal stage– and tissue-specific expression pat-
terns. Specifically, TET1 is highly expressed in
the inner cell mass (ICM) of mouse blastocysts
(10) and mouse E10.5–13.5 PGCs (65); TET2
is broadly expressed in various mouse tissues
(10); and TET3, although exhibiting a broad
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UTR: untranslated
region

OGT: O-GlcNAc
transferase

2HG:
2-hydroxyglutarate

IDH: isocitrate
dehydrogenase

expression pattern in adult mouse tissues, is
the only TET protein that is highly expressed
in mouse oocytes and zygotes (66, 67). In line
with the upregulation of TET1 in mouse E10.5
PGCs (65), 5mC is actively converted to 5hmC
at this time point (68, 69), indicating that reg-
ulation of TET expression is a primary way to
control 5hmC production.

The regulation of TET expression has
been reported at different levels. The upstream
region of the mouse Tet1 gene contains a large
cluster of binding sites for core pluripotency
transcription factors (70), which explains why
TET1 is highly expressed in mouse ESCs but
are rapidly downregulated after differentiation
(10, 71). TET expression is also regulated at
the posttranscriptional level. For example, the
oncogenic microRNA (miRNA) miR-22 tar-
gets TET2 by directly interacting with its 3′ un-
translated region (3′UTR) in breast cancer cells
and hematopoietic stem cells (72, 73). Interest-
ingly, it appears that both human and mouse
TET genes carry predicted miRNA recognition
elements of miR-22 within their 3′UTRs (73),
implicating a conserved miRNA regulatory
mechanism. Furthermore, TET expression
can also be regulated at the protein level. For
example, one study showed that the CXXC
domain–containing protein IDAX (inhibition
of the Dvl and Axin complex; also known as
CXXC4) directly interacts with the catalytic
domain of TET2 to downregulate the TET2
protein through caspase-mediated degradation
(34).

Regulation by TET-Interacting
Proteins and
5-Hydroxymethylcytosine-Binding
Proteins

In addition to IDAX, many other TET-
interacting proteins, such as O-linked N-
acetylglucosamine (O-GlcNAc) transferase
(OGT) and the SIN3A complex (74–78),
have been identified. OGT can GlcNAcylate
TET proteins; mutation of the putative
O-GlcNAcylation site decreases the level
of TET1 (74). Although OGT does not

directly regulate the enzymatic activity of
TET proteins, knockdown of Ogt in mouse
ESCs decreases the association of TET1
with chromatin and alters 5hmC enrichment
at certain loci (74, 78). Nevertheless, how
other TET-interacting partners regulate TET
proteins remains to be determined.

In addition to TET-interacting proteins,
some 5hmC-binding proteins can also regu-
late TET-catalyzed 5mC oxidation. For ex-
ample, one study showed that knockdown
of methyl-CpG-binding domain protein 3
(MBD3), which binds to both 5mC and 5hmC,
strongly reduces global 5hmC levels in mouse
ESCs (79). In another study, UHRF2 was
identified as a 5hmC-specific binding pro-
tein in neuronal progenitor cells. Surprisingly,
UHRF2 can stimulate the processivity of TET1
when co-overexpressed with the catalytic do-
main of TET1 in HEK293T cells (80). How-
ever, the molecular mechanisms underlying
these observations, as well as their biological
significance, remain to be determined.

Regulation by Metabolites
and Cofactors

As discussed above, TET-mediated reaction re-
quires Fe(II) and αKG as cofactors. Because
αKG is an intermediate of the tricarboxylic
acid cycle, it is reasonable to suppose that
cells’ metabolic state, which affects intracel-
lular αKG levels, may influence TET activ-
ity. Consistent with this idea, oncometabolite
2-hydroxyglutarate (2HG) inhibits TET pro-
teins by competing with αKG (81, 82). In-
deed, the five-carbon dicarboxylic acids 2HG
and αKG are chemical analogs, and the substi-
tution of the keto group on αKG to a hydroxyl
group on 2HG could interfere with Fe(II) bind-
ing and stabilize the reaction intermediate. Re-
markably, cellular accumulation of 2HG is of-
ten caused by tumor-associated mutations in
the NADP+-dependent isocitrate dehydroge-
nase genes (IDH1 and IDH2), which encode
enzymes that normally produce αKG. These
tumor-associated IDH1 and IDH2 mutations
(affecting R132 of IDH1 or R140 and R172 of
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FH: fumarate
hydratase

SDH: succinate
dehydrogenase

DIP-Seq: DNA
immunoprecipitation
sequencing

BS-Seq: bisulfite
sequencing

IDH2) impair αKG production and confer a
neomorphic enzyme activity to convert αKG
to 2HG (83, 84), inhibiting TET activity. Co-
expression of mutant IDH enzymes with TET
consistently inhibits TET-mediated 5mC-to-
5hmC conversion (81, 82).

In addition to 2HG, two other metabolites,
fumarate and succinate, also share structural
similarity with αKG. Both function as com-
petitive inhibitors of Fe(II)/αKG-dependent
dioxygenases and accumulate in a subset of
human cancers with inactivation mutations of
fumarate hydratase (FH ) and succinate de-
hydrogenase (SDH ), respectively (85). Thus,
multiple intracellular metabolites may regu-
late TET-mediated oxidative DNA demethy-
lation, at least under certain pathological
conditions.

Recently, three groups reported that ascor-
bate (vitamin C) enhances the catalytic activ-
ity of TET proteins both in vitro and in vivo
(86–88). In wild-type (but not Tet1- or Tet2-
deficient) mouse ESCs, ascorbate significantly
increases the levels of all 5mC oxidation prod-
ucts (86, 88), particularly 5fC and 5caC, by
more than an order of magnitude, leading to
a global loss of 5mC (∼40%) (86). Mecha-
nistically, ascorbate interacts with the catalytic
domain of TET and probably facilitates its
folding (86). Interestingly, ascorbate-induced
demethylation has a stronger effect on DNA
sequences that gain methylation in cultured
ESCs compared with blastocysts (i.e., DNA
sequences that normally gain methylation af-
ter implantation) (88). Taken together, these
studies suggest that ascorbate directly regulates
TET activity and that it may play a critical
role in regulating DNA demethylation during
development.

Given the importance of precise regulation
of DNA methylation in various biological pro-
cesses, it is not surprising that TET activity is
regulated by multiple factors, such as intracel-
lular metabolites, nutritional and developmen-
tal signals, stress, and chemical exposure. Note
that both ATP and hydroquinone also stimulate
TET-mediated 5mC oxidation (12, 89).

GENOME-WIDE MAPPING OF
OXIDIZED 5-METHYLCYTOSINE
DERIVATIVES
An important approach to understanding the
function of TET proteins is to study the ge-
nomic distribution of 5mC oxidation products.
Investigators have developed methods for map-
ping newly discovered cytosine derivatives that
are proving to be valuable in revealing these
proteins’ potential functions (Figure 4a) (90).

Typically, two types of methods are em-
ployed to map the genome-wide distribution
of 5mC. The first type is affinity-based profil-
ing that utilizes a specific antibody [DNA im-
munoprecipitation sequencing (DIP-Seq)] or
binding protein (e.g., methyl-binding protein
sequencing) to enrich 5mC-containing DNA
fragments (Figure 4b) (91). Subsequent high-
throughput sequencing of the enriched DNA
fragments provides genome-wide distribution
of 5mC. Such profiling is inexpensive, but its
shortcomings include poor resolution (a few
hundred base pairs) and a lack of informa-
tion about the relative abundance of 5mC at
each modification site. The second approach
is bisulfite-based base-resolution sequencing
(BS-Seq) of 5mC. It relies on first treating DNA
with sodium bisulfite (NaHSO3), which deam-
inates unmodified cytosine but not 5mC. Sub-
sequent polymerase chain reaction (PCR) am-
plification converts the deaminated cytosine to
thymine and 5mC to cytosine (Figure 5). By
coupling this bisulfite conversion with high-
throughput sequencing, BS-Seq enables quan-
titative assessment of the abundance of 5mC
at base resolution. The only shortcoming of
BS-Seq is its relatively high cost (92).

The discovery of 5hmC, 5fC, and 5caC re-
quires new sequencing methods to reveal the
biological functions associated with these types
of modifications. The presence of these cy-
tosine derivatives in the genome complicates
base-resolution sequencing of 5mC in BS-Seq
because 5hmC behaves similarly to 5mC in BS-
Seq (93, 94), whereas 5fC and 5caC behave sim-
ilarly to unmodified cytosine (Figure 5) (12, 95,
96). As a result, all of the 5mC signals obtained
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Figure 4
Sequencing methods for 5-methylcytosine (5mC) derivatives. (a) Timeline of sequencing-method develop-
ment for cytosine derivatives. (b) Affinity-based profiling methods for oxidized 5mC derivatives. Antibody-
based DNA immunoprecipitation (DIP) methods are available for 5mC (5mC-DIP-Seq, MBD-Seq), 5-
hydroxymethylcytosine (5hmC) (5hmC-DIP-Seq, CMS-IP, JBP1-IP), 5-formylcytosine (5fC) (5fC-DIP-Seq),
and 5-carboxylcytosine (5caC) (5caC-DIP-Seq). 5hmC, 5fC, and 5caC can also be chemically and/or enzymati-
cally labeled with biotin. These methods include 5hmC-selective chemical labeling (hMe-Seal) and GLIB (glu-
cosylation, periodate oxidation, biotinylation) for 5hmC profiling, 5fC chemical pull-down, and 5fC-selective
chemical labeling (fC-Seal) for 5fC profiling. Abbreviations: CMS, 5-methylenesulfonate; DIP-Seq, DNA
immunoprecipitation sequencing; JBP, J-binding protein; MBD-Seq, methyl-binding protein sequencing.

in traditional BS-Seq experiments represent the
sum of 5mC and 5hmC.

Recently, researchers developed several se-
quencing strategies to facilitate mapping of the

various cytosine derivatives and to understand
the DNA demethylation process. Both affinity-
based profiling and base-resolution methods
are currently available for 5hmC, 5fC, and 5caC
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Figure 5
Bisulfite sequencing (BS-Seq) and modified BS-Seq for base-resolution detection of oxidized
5-methylcytosine (5mC). With bisulfite treatment and polymerase chain reaction (PCR) amplification,
BS-Seq reads out the sum of 5mC and 5-hydroxymethylcytosine (5hmC). Oxidative bisulfite sequencing
(oxBS-Seq) oxidizes DNA with potassium perruthenate (KRuO4) before bisulfite treatment and PCR
amplification. It reads out 5hmC through subtraction from BS-Seq signals. TET-assisted bisulfite
sequencing (TAB-Seq) requires the protection of 5hmC with glucosylation before oxidizing DNA with TET
proteins. After bisulfite treatment and PCR amplification, TAB-Seq directly reads out 5hmC. 5fC chemical
modification–assisted bisulfite sequencing (fCAB-Seq) protects 5fC with EtONH2 before bisulfite treatment
and PCR amplification, and after subtracting BS-Seq signals, it reads out 5fC. 5caC chemical
modification–assisted bisulfite sequencing (caCAB-Seq) protects 5-carboxylcytosine (5caC) with
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) coupling before bisulfite treatment and PCR
amplification, and after subtracting BS-Seq signals, it reads out 5caC.

(Figure 4a) (16, 90). We describe these map-
ping methods and focus on recent advances in
base-resolution methods, as well as the biology
learned from these studies.

Affinity-Based Methods

Several profiling methods have been devel-
oped to map the genomic distribution of the

oxidized derivatives of 5mC. Antibodies against
all three 5mC oxidation derivatives are avail-
able, and antibody-based DIP-Seq has been
used to map the genome-wide distribution
of 5hmC (70, 75, 97–100), 5fC (58), and
5caC (58). These methods often suffer from
high background and bias toward densely
modified genomic regions (16). For 5hmC,
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g5hmC: glucosylated
5hmC

βGT:
β-glucosyltransferase

two approaches involving modifying 5hmC
before immunoprecipitation appear to have
higher specificity and lower background com-
pared with simply using anti-5hmC antibodies
(101). In one approach, 5hmC is converted to
5-methylenesulfonate (CMS) with sodium
bisulfite; an anti-CMS antibody has been devel-
oped and used for immunoprecipitation (101).
In another strategy, 5hmC is converted to
glucosylated 5hmC (g5hmC) by T4 bacterio-
phage β-glucosyltransferase (βGT); thereafter,
JBP1, a natural g5hmC-binding protein, is used
for immunoprecipitation to enrich g5hmC-
containing DNA (102).

Another major type of profiling involves
chemically or enzymatically adding a biotin tag
to the cytosine modifications to pull them down
with avidin/streptavidin beads (Figure 4b). The
strong and selective biotin–avidin/streptavidin
interaction makes these methods more sen-
sitive, thereby decreasing background signal
(103). βGT is a highly efficient and sequence-
independent enzyme that can glucosylate
5hmC in synthetic oligos and genomic DNA
with a turnover of (∼1 × 108) min−1 (104).
Two approaches that use βGT to add a bi-
otin to 5hmC have been developed. The first
one, 5hmC-selective chemical labeling (hMe-
Seal), uses βGT to transfer an azide-modified
glucose to 5hmC; thereafter, a cyclooctyne–
biotin probe is used to attach a biotin group
to 5hmC via azide-cyclooctyne click chemistry
(105). The second method, known as GLIB
(glucosylation, periodate oxidation, biotinyla-
tion), uses βGT to transfer an unmodified
glucose to 5hmC, resulting in g5hmC. Next,
sodium periodate (NaIO4) is used to oxidize
the vicinal hydroxyl groups in the glucose of
g5hmC to aldehyde groups, which then react
with an aminooxy-biotin probe to attach a bi-
otin group to 5hmC (101).

On the basis of hMe-Seal, a similar 5fC-
selective chemical labeling method (fC-Seal)
has been developed (59). In fC-Seal, endoge-
nous 5fC in genomic DNA is first blocked by
unmodified regular glucose via βGT. Then,
5fC is selectively reduced to 5hmC by sodium
borohydride (NaBH4). hMe-Seal is then

employed to label the newly generated 5hmC
(from 5fC) with biotin (59). 5fC and 5caC can
also be directly labeled with a biotin group by
use of aminooxy-aldehyde condensation (5fC
chemical pull-down) (106) and 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide (EDC)-
mediated amino–carboxyl coupling (107),
respectively. However, both transformations
have side reactions with other modified
cytosine bases or backbones of the DNA,
resulting in high background in the subsequent
pull-down. For 5hmC, βGT-mediated gluco-
sylation, coupled with restriction endonuclease
digestion, has also been used for genome-wide
profiling of 5hmC (108, 109).

With the application of these profiling
methods, we have a general picture of the
genome-wide distribution of the oxidized 5mC
derivatives in various cell lines and tissues
(16); ESCs and neuronal cells are the two
most-studied systems. Note that discrepancies
among published studies exist; they may
be due to different methodologies and data
analyses (16, 103). The potential bias of certain
methods also contributes to incomplete results
and sometimes inaccurate conclusions. Nev-
ertheless, in mouse and human ESCs, 5hmC is
clearly enriched at distal regulatory elements
such as enhancers and transcription factor–
binding sites; transcription start sites, especially
bivalent promoters; and gene bodies, especially
exons (70, 75, 97–99, 101, 110). In ESCs, the
distributions of 5fC and 5caC generally resem-
ble those of 5hmC but show a preference for
distal regulatory elements, such as enhancers
and bivalent and silent promoters (58, 59). The
levels of 5fC and 5caC further increase at these
regions upon TDG depletion, marking sites of
TET/TDG-mediated demethylation. These
recent studies indicate genome-wide active
demethylation in mouse ESCs (58, 59). In
mouse and human neuronal cells, studies have
consistently shown that 5hmC is enriched at
gene bodies and that the enrichment level posi-
tively correlates with the gene-expression level
(100, 105, 111–113). 5hmC is also depleted
from transcription start sites (111). Compared
with studies in ESCs, these observations
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suggest a distinct and perhaps more active
regulatory role of 5hmC in neuronal cells.

Base-Resolution Mapping of Oxidized
5-Methylcytosine Derivatives

Affinity-based profiling methods have provided
valuable initial biological insights into 5hmC,
5fC, and 5caC; however, low resolution and a
lack of quantitative information at each modi-
fication site are limitations. Quantitative mea-
surements of these modifications at base resolu-
tion are highly desirable to obtain more precise
biological information. For this purpose, sev-
eral high-resolution sequencing methods, in-
cluding single-molecule sequencing, modified
BS-Seq, and restriction endonuclease–coupled
sequencing, have been developed.

Third-generation sequencing technologies,
involving single-molecule sequencing and
amplification-free sample preparation, can di-
rectly detect DNA modifications during se-
quencing (114). These technologies include the
well-established techniques of single-molecule,
real-time (SMRT) sequencing and nanopore
sequencing. SMRT sequencing monitors the
fluorescent and kinetic signal of individual
DNA polymerases during each cycle of DNA
synthesis, enabling the detection of various
base modifications, including 5hmC (115), 5fC
(116), and 5caC (116). Through the integra-
tion of hMe-Seal, SMRT sequencing has been
used to detect base-resolution 5hmC in mouse
ESC DNA (115). Nanopore sequencing, which
records the signal that arises when individual
DNA molecules pass through nanoscale pores,
has also been used to detect 5hmC in syn-
thetic oligos (117–119). These single-molecule
sequencing technologies promise to provide
base-resolution maps of various nucleic acid
modifications in the future, but further techno-
logical developments are needed for genome-
wide mapping in mammalian cells.

Currently, a widely used strategy for base-
resolution mapping of oxidized 5mC bases is to
modify BS-Seq by exploring different proper-
ties of cytosine derivatives in bisulfite treatment
(Figure 5). As a reminder, cytosine, 5fC, and

5caC are deaminated and converted to thymine
after bisulfite treatment and PCR amplification,
whereas 5mC and 5hmC remain as cytosine.
Two methods have recently been developed
for genome-wide base-resolution 5hmC
mapping. The first method, oxidative bisulfite
(oxBS) sequencing (oxBS-Seq), uses potassium
perruthenate (KRuO4) to chemically oxidize
5hmC to 5fC; therefore, only 5mC is retained as
cytosine in oxBS. Base-resolution information
about 5hmC can be obtained by subtracting
oxBS-Seq signals (5mC only) from BS-Seq
(5mC and 5hmC) (95). In the second method,
TET-assisted bisulfite sequencing (TAB-Seq),
5hmC is protected from TET oxidation
through conversion to g5hmC using βGT;
then, 5mC is oxidized to 5caC by use of mouse
TET1 protein. Thus, TAB-Seq directly reads
out 5hmC as the only cytosine signal in the
subsequent BS-Seq data (96). Subtraction
of TAB-Seq signals from BS-Seq signals
yields base-resolution information about 5mC.
Both oxBS-Seq and TAB-Seq can deliver
quantitative-abundance information about
5hmC and 5mC. Due to the extensive DNA
degradation caused by KRuO4 oxidation,
so far oxBS-Seq has been applied to only a
fraction of the mammalian genome in reduced
representation BS-Seq (95), whereas TAB-Seq
has been used to map both genome-wide
and loci-specific 5hmC (32, 96, 113, 120).
However, note that, at normal sequencing
depth, TAB-Seq can detect only relatively
abundant 5hmC sites (>20%) (96).

Very recently, modified BS-Seq for base-
resolution 5fC and 5caC mapping became avail-
able (Figure 5). 5fC chemical modification–
assisted bisulfite sequencing (fCAB-Seq)
utilizes O-ethylhydroxylamine (EtONH2)
to chemically block 5fC from deamination
in BS-Seq (59). Similarly, 5caC chemical
modification–assisted bisulfite sequencing
(caCAB-Seq) uses EDC-based coupling to
chemically block 5caC from bisulfite deam-
ination (107). Together with conventional
BS-Seq, fCAB-Seq and caCAB-Seq reveal
quantitative base-resolution information about
5fC and 5caC, respectively. Due to the low
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abundance of 5fC and 5caC, a maximum
sequencing depth is needed to confidently
detect them at base resolution. For instance,
fCAB-Seq requires ∼1,000× or higher cover-
age to map 5fC in a single locus (59). Thus,
currently it is still impractical to use fCAB-Seq
or caCAB-Seq in whole-genome sequencing.
However, fCAB-Seq can be combined with
chromatin immunoprecipitation to map a
fraction of the genome enriched with 5fC (59).
Coupling enrichment with CAB-Seq could be a
practical approach to obtaining genome-wide,
base-resolution information about 5fC and
5caC.

A unique technique known as AbaSI
coupled with sequencing (Aba-Seq) has also
been developed for high-resolution genome-
wide mapping of 5hmC (121). AbaSI is a
member of a family of 5hmC-dependent
restriction endonucleases that recognize and
cut g5hmC; the recognition sequence is 5′-
g5hmCN11−13↓N9−16G-3′/3′-GN9−10↓N11−13X-
5′ (where N represents any base, ↓ indicates
a cutting site, and the activity is as follows:
X = g5hmC > 5hmC > 5mC > cytosine).
After βGT glucosylation and AbaSI digestion,
Aba-Seq sequences the enriched cleaved ends
to determine the 5hmC sites. This approach
is not exactly base resolution. A preference for
symmetrical 5hmC, as well as residual activity
toward other forms of cytosine, may complicate
data analysis; however, Aba-Seq has the advan-
tage of detecting low-abundance 5hmC sites
with a relatively low sequencing depth (121).

The application of base-resolution methods
has revealed new aspects of 5mC oxidation that
were difficult to determine through affinity-
based profiling. TAB-Seq has been used to
map 5hmC sites in both mouse and human
ESCs (96) and frontal cortex (120). In con-
trast to the prevalence of non-CpG methyla-
tion (CpH, where H = A, C, or T) in ESCs
and mature neurons, nearly all the 5hmC in
these cells is found in a CpG context (96, 120),
consistent with the finding that the active cav-
ity of TET2 specifically recognizes CpG di-
nucleotides (28). In addition, TAB-Seq results
revealed that most 5hmC sites exist in distal

regulatory elements, such as enhancers, and
near (but not on) transcription factor–binding
sites with reciprocal low levels of 5mC; this
finding implicates dynamic DNA methylation
or demethylation processes at these elements
(96). Recently, fCAB-Seq was used to confirm
the presence of 5fC at selective loci and the pref-
erence of 5fC for poised enhancers compared
with active enhancers (59).

BIOLOGICAL FUNCTIONS OF
TET-MEDIATED OXIDATION
OF 5-METHYLCYTOSINE

With increasing biochemical knowledge about
the TET-mediated DNA demethylation, as
well as emerging technologies for mapping
5mC oxidation products, we are beginning to
understand the functions of TET-mediated
5mC oxidation in the biological processes in
which DNA demethylation takes place. Two
major waves of global DNA demethylation oc-
cur in mammalian development (4, 122). The
first wave occurs at the beginning of the mam-
malian life cycle upon fertilization of eggs by
sperm. The second wave takes place in the
developing PGCs. Given their roles in DNA
demethylation, TET proteins have been exten-
sively studied in these systems.

Role in Preimplantation Development

Approximately 30 years ago, studies using
methylation-sensitive restriction enzyme di-
gestion demonstrated that the sperm genome
is relatively hypermethylated compared with
the egg genome and that a global demethyla-
tion event takes place during preimplantation
development (123). These observations were
later confirmed by immunostaining and locus-
specific BS-Seq (124, 125). Interestingly, the
paternal and maternal pronuclei undergo DNA
demethylation with distinct kinetics (Figure 6).
Loss of 5mC signal in the sperm-derived pa-
ternal genome takes place immediately after
fertilization, before the first round of DNA
replication commences, suggesting active era-
sure of 5mC. By contrast, egg-derived maternal
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DMR: differentially
methylated region

genome is demethylated during the subsequent
cleavage divisions, indicating passive demethy-
lation. These observations raised two important
questions regarding the identity of the involved
enzymes and the molecular mechanism under-
lying the asymmetric DNA methylation re-
programming. Follow-up studies demonstrated
that PGC7 (also known as DPPA3 or Stella), a
maternal factor that is essential for early devel-
opment, protects the maternal genome from ac-
tive demethylation (126). However, the enzyme
responsible for active demethylation itself had
been elusive until recently.

The first indication that TET proteins
might be responsible for the rapid loss of 5mC
in paternal genome of zygotes came from
immunostaining studies that used antibodies
specific for 5hmC. These studies demon-
strated that loss of 5mC coincides with the
appearance of 5hmC in the paternal genome
(66, 67). Consistent with the idea that TET3
is responsible for this process, small inter-
fering RNA–mediated depletion or targeted
knockout of Tet3 prevented 5mC-to-5hmC
conversion in the paternal genome (66, 127).
Interestingly, although TET3 actively converts
5mC to 5hmC, high-resolution chromosome
immunostaining revealed that the 5hmC
generated in zygotes is relatively stable and
is gradually lost in a replication-dependent
manner during preimplantation development
(128). Similar studies also revealed that the
generation and disappearance of 5fC and 5caC
follow the same pattern as those of 5hmC (129),
implicating a dilution mechanism of the oxi-
dized 5mC derivatives during preimplantation
development (Figure 6).

TET3-mediated oxidation of 5mC in
the paternal genome appears to be a well-
controlled process. TET3 is a maternal protein
that is uniformly distributed in the egg cyto-
plasm. Upon fertilization, TET3 is specifically
enriched in the paternal pronucleus but not
the maternal pronucleus (127). The paternal
pronucleus–specific localization of TET3
might be linked to the maternal pronucleus–
specific localization of the PGC7 protein (130).
A recent study indicated that the maternal

Fertilization

2 cells 4 cells 8 cells Morula Blastocyst EpiblastZygote

Tdg

Paternal 5mC

Paternal 5hmC/5fC/5caC
Maternal 5hmC/5fC/5caC
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Figure 6
Dynamics of 5-methylcytosine (5mC) and its oxidation derivatives during
preimplantation development. After fertilization, 5mC in the paternal genome
is quickly converted to 5-hydroxymethylcytosine/5-formylcytosine/
5-carboxylcytosine (5hmC/5fC/5caC), which is then diluted through a
replication-dependent process, whereas the maternal genome simply goes
through replication-dependent passive DNA demethylation. At the blastocyst
stage, DNA methylation patterns in the inner cell mass are quickly
reestablished. The expression levels of Tet1, Tet2, Tet3, and Tdg are indicated
(the dashed line represents cytoplasmic localization).

pronucleus–specific histone H3K9 dimethyla-
tion (H3K9me2) is responsible for attracting
PGC7 to the maternal pronucleus (130), but
how PGC7 prevents TET3 from entering
maternal pronucleus remains to be determined.
Notably, PGC7 may also contribute to the
protection of imprinted genes from demethyla-
tion during preimplantation development. For
example, methylation of H19 and Rasgrf1 dif-
ferentially methylated regions (DMRs) is lost
in embryos derived from PGC7-null oocytes
(126). However, not all paternally imprinted
genes are affected by the loss of PGC7 [e.g.,
the DMR of the Dlk1–Gtl2/Meg3 domain
is unaffected (126)], indicating that PGC7
is not the only factor involved in protecting
methylated DNA from demethylation.

Role in Primordial Germ
Cell Reprogramming

During early embryonic development, global
DNA methylation reaches its lowest point at
E3.5 in the ICM; then, remethylation begins
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Figure 7
DNA methylation dynamics during primordial germ cell (PGC)
reprogramming. Genome-wide DNA demethylation in developing PGCs takes
place in two steps. First, during embryonic day (E)7.25 to E9.5, the bulk of the
genome is demethylated in a replication-dependent but TET-independent
manner. Second, at E9.5, TET1 and possibly TET2 convert the remaining
5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which is then
diluted through a replication-dependent process to complete the demethylation
in PGC reprogramming. The expression levels of Tet1, Tet2, Tet3, and Tdg are
indicated.

and reaches completion by E6.5 (131). Be-
cause PGCs originate from proximal epiblasts
at ∼E6.5, they largely inherit the newly estab-
lished DNA methylation pattern of the epi-
blast cells. Erasure of this DNA methylation
pattern, including the parent-of-origin-specific
DNA methylation imprints, is essential in re-
setting the PGC epigenome to prepare these
cells for germ cell development (132). In line
with the requirement for demethylation in this
process, both TET1 and TET2 are expressed
in developing PGCs (Figure 7), and several re-
cent studies have demonstrated an important
role of TET-mediated 5mC oxidation during
this process (65, 68, 69, 133, 134).

Previous studies have demonstrated that
global erasure of DNA demethylation takes
place at E8.5–E12.5 PGCs, leading to almost
complete erasure of DNA methylation by E13.5
(53, 135, 136). Several recent studies have re-
vealed that PGC demethylation occurs in two
distinct phases and employs both replication-
dependent and -independent mechanisms (68,
69, 137, 138). At E9.5, ∼70% of the DNA
methylation in PGCs is lost (Figure 7) (138).

Passive demethylation is probably responsible
for this phase of DNA demethylation because
Uhrf1, the gene that encodes for the cofactor
essential for DNA methylation maintenance,
is not expressed (Figure 7) (139). However,
the methylation pattern of some regions, such
as imprinting control regions, is maintained
during this period, and these regions are not
demethylated until the second phase (E9.5–
E12.5), after PGCs enter the genital ridge.
The second phase coincides with the upregula-
tion of TET1 expression and the generation of
5hmC (Figure 7), indicating that TET1 func-
tions in the second phase. Oxidation of 5mC
by TET1 (and possibly TET2) in this phase is
a well-controlled active process, but erasure of
the resulting 5hmC is probably a replication-
dependent process (68, 69, 137). Several se-
quence classes that escape the first wave of DNA
demethylation are demethylated in this phase.
These sequence classes, including DMRs of
imprinted genes, promoters of gametogenesis-
related genes, and CpG islands of the X chro-
mosome (68, 137, 138), suggest that TET pro-
teins are functionally important in the removal
of locus-specific 5mC in the second stage of
PGC reprogramming.

In support of the locus-specific effect of
TET proteins in PGC reprogramming, deple-
tion of Tet1 alone or of both Tet1 and Tet2 does
not lead to a global increase of 5mC levels in
E13.5 PGCs or sperm (65, 140). Hypermethy-
lation of the DMRs of some imprinted genes
has been observed in some offspring of Tet1
and Tet2 double-knockout mice (140), implicat-
ing incomplete demethylation of DMRs during
PGC reprogramming. Definitive evidence for
the involvement of TET1 in imprinting era-
sure came from an analysis of the offspring
of homozygous Tet1-null male mice crossed
with wild-type female mice (141). Although
all these mice were heterozygous, they ex-
hibited various imprinting abnormality–related
defects, including early embryonic lethality,
placental and embryonic growth defects, and
postnatal growth retardation. RNA-Seq and
BS-Seq of embryonic tissues revealed defec-
tive demethylation at the DMRs of various
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2i condition:
serum-free medium
supplemented with
two small-molecule
kinase inhibitors,
ERK1/2 inhibitor
PD0325901 and
GSK3β inhibitor
CHIR99021

imprinted genes, including Peg10 and Peg3.
Similar defects were observed in the placentas
and were traced back to the sperm of the mutant
mice. Finally, reduced representation BS-Seq
analysis of E13.5 PGCs of mutant male mice
showed hypermethylation in the DMRs of im-
printed genes and gametogenesis-related gene
promoters (141); both groups of genes belong
to the late-demethylation gene groups during
PGC reprogramming (138), a finding consis-
tent with TET1 playing a role in the second
phase of PGC reprogramming. Collectively,
these studies have established a critical function
of TET1 in imprinting erasure during PGC
reprogramming.

Role in Stem Cell and Somatic
Cell Reprogramming

DNA methylation dynamics has also been
observed during stem cell differentiation and
somatic cell reprogramming. Mouse ESCs are
derived from the ICM of E3.5 blastocysts. At
that time, global DNA methylation has reached
its lowest point and de novo establishment of
DNA methylation pattern is about to begin. In
ESCs cultured under the standard condition (in
a medium containing serum and leukemia in-
hibitory factor), the machinery for both de novo
DNA methylation (DNMT3A and DNMT3B)
and DNA demethylation (TET1, TET2, and
TDG) is present, making ESCs a unique
system for study of the regulation of these
cytosine-modifying enzymes. The biological
functions of TET proteins in ESCs have been
reviewed elsewhere (16, 142, 143), but whether
the biological functions of TET proteins are
related to their catalytic activities is not very
well understood. TET proteins may upregu-
late gene expression through their oxidative
demethylation function (144) or by recruiting
OGT to gene promoters (74, 76–78), and they
may also downregulate gene expression by facil-
itating the recruitment of Polycomb repressive
complex 2 and/or SIN3A corepressor complex
(75, 144).

The function of TET-mediated 5mC oxi-
dation has been more clearly demonstrated in

ESCs cultured under the 2i condition. Mass
spectrometry and genome-wide BS-Seq re-
sults showed that changing ESC culture con-
ditions from serum to 2i induces genome-wide
demethylation, resulting in a hypomethylated
genome that resembles the cells in the ICM of
E3.5 blastocysts (145–147). Detailed analyses
of DNA methylation showed that, after switch-
ing to the 2i condition, DNA methylation de-
creases in a stepwise manner concomitantly
with an increase in the 5hmC level, and that the
demethylated regions significantly overlap with
TET1-binding sites in ESCs (146, 147). Fur-
thermore, a combination of Tet1 knockout and
Tet2 knockdown substantially reduced 5hmC
and delayed demethylation upon 2i treatment
(146), suggesting that TET-mediated 5mC ox-
idation is involved in this 2i-induced demethy-
lation process. Because 2i-induced demethyla-
tion is a slow process that takes ∼12 days (147),
the underlying mechanism is probably passive
dilution of 5hmC. More detailed genome-wide
studies of both 5mC and 5hmC that compare
wild-type and Tet1 and Tet2 double-deficient
ESCs are required to elucidate how and to what
extent TET1 and TET2 are involved in this
demethylation process.

Previous mass spectrometry analyses
showed that 5fC and 5caC are relatively
abundant in ESCs compared with other cells
and tissues (11), suggesting that TET/TDG-
mediated active DNA demethylation activity
is present in ESCs. Indeed, a recent genome-
wide mapping study of 5fC/5caC in mouse
ESCs revealed the accumulation of 5fC/5caC
at poised/active distal regulatory elements and
poised/inactive promoters of lineage-specific
genes, especially upon Tdg depletion (58, 59).
These findings suggest that dynamic DNA
methylation/demethylation is present at those
loci. Given that the level of de novo DNA
methylation activity in ESCs is high, the
presence of TET/TDG-mediated active DNA
demethylation activity may help precisely
and efficiently correct methylation errors
accidentally generated by the de novo DNMTs
and ensure a proper DNA methylation pattern
in ESCs and during differentiation.
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In addition to contributing to ESC main-
tenance, TET proteins also involve repro-
gramming of somatic cells to generate induced
pluripotent stem cells. For example, at the
early stage of the transduction of the Yamanaka
factors (OCT4, SOX2, KLF4, and c-MYC),
TET2 is recruited to the Nanog and Esrrb
loci to activate their expression (148). In ad-
dition, both TET1 and TET2 can associate
with NANOG and facilitate induced pluripo-
tent stem cell generation in an enzymatic
activity–dependent manner (149). Remarkably,
TET1 can not only enhance the reprogram-
ming efficiency, but also replace OCT4 in the
reprogramming cocktail (150). Furthermore,
beyond transcription factor–mediated repro-
gramming, TET proteins also contribute to cell
fusion–mediated somatic cell reprogramming
(151).

Role in Cancer

Aberrant DNA methylation is the most com-
mon molecular lesion in cancer cells; it usu-
ally causes global DNA hypomethylation and
locus-specific promoter hypermethylation (6,
152). The first indication that TET proteins
may have a role in cancer was the finding that
TET1 is a fusion partner of MLL in rare cases
of AML (24, 25). TET1 has also been im-
plicated in suppressing breast cancer growth
and metastasis through demethylation of spe-
cific genes (153). In addition, TET2 mutations
have frequently been found in myeloid ma-
lignancies (∼15%) (154–156). Indeed, genetic
studies demonstrated that TET2 is critical for
hematopoietic stem cell self-renewal and differ-
entiation in mouse models, and confirmed that
Tet2 inactivation leads to the development of
myeloid malignancies (157–160). A global loss
of 5hmC levels has been observed in various
types of cancers, such as human skin, myeloid,
breast, liver, lung, pancreatic, and prostate can-
cers (36, 161–163), suggesting that impairment
of TET-mediated 5mC oxidation may be com-
mon in cancer development. Indeed, TET pro-
teins have been reported as targets of oncogenic
miRNAs (72, 73), and downregulation of TET

expression is frequently observed in cancer cells
(162). Therefore, TET proteins generally func-
tion as tumor suppressors. However, a recent
study also indicated that TET1 plays an onco-
genic role in MLL-rearranged leukemia (164),
although whether this role is relevant to its 5mC
oxidation activity has yet to be determined.

Not only are mutations in TET genes them-
selves associated with tumorigenesis; mutations
in the pathways affecting the generation of co-
factors of TET-mediated reactions also con-
tribute to tumor formation. As discussed above,
tumor-associated mutations in IDH1 and IDH2
or inactivating mutations in FH and SDH
can cause the accumulation of αKG analogs
(2HG, fumarate, and succinate) that can inhibit
TET-mediated 5mC oxidation. Interestingly,
although both are frequently found in AML,
IDH1 and IDH2 mutations and TET2 muta-
tions are mutually exclusive (81), suggesting
that neomorphic mutations in IDH1 and IDH2
contribute to tumorigenesis by inactivating
TET2 in AML. Thus, the inhibition of TET-
mediated 5mC oxidation and the consequent
global loss of 5hmC appear to be hallmarks of a
subset of tumors. Further studies are needed to
understand how and to what extent the dysreg-
ulation of TET activity contributes to aberrant
DNA methylation and tumorigenesis.

RNA METHYLATION AND
DEMETHYLATION

Methylation modifications are widely
spread in mammalian RNA in the forms
of N 7-methylguanosine, N 6-methyl-2′-O-
methyladenosine, 2′-O-methylated nucleo-
sides, 5mC, and m6A (17). The reversibility
of RNA methylation was first demonstrated
in 2011, when investigators found that FTO
exhibits robust m6A RNA demethylase activity
(2), indicating that reversal of this most preva-
lent mRNA modification in mammalian cells
is possible (165). To date, two AlkB family
dioxygenases, FTO and ALKBH5 (15), are
known to efficiently convert m6A to adenosine
(Figure 1c). FTO and ALKBH5 are efficient
mammalian m6A demethylases with turnover
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numbers ranging from 0.1 to 0.3 min−1 (2, 15),
approximately 10-fold lower than that of the
E. coli prototype AlkB (166). FTO affects hu-
man obesity and energy homeostasis (167–169)
and may reverse m6A methylation in specific
mRNAs that are important for neuronal sig-
naling in midbrain (170). ALKBH5, however,
affects mRNA export and RNA metabolism.
Alkbh5 deficiency leads to increased levels of
m6A in mRNA, and male Alkbh5-null mice
exhibit impaired fertility due to their deficiency
in spermatogenesis (15). Potential m6A-specific
binding proteins have also been suggested
(171, 172).

Increasing evidence supports the idea that
reversible RNA m6A modification plays broad
and critical roles in fundamental biological pro-
cesses in mammals (5, 17, 173, 174). In addi-
tion to chromatin-based epigenetic regulations,
dynamic RNA modifications can add another
layer of complexity to biological regulation
(173, 174). Interestingly, biochemical and cel-
lular studies have shown that FTO can oxidize
m6A to short-lived, previously unknown inter-
mediates, namely N 6-hydroxymethyladenosine
(hm6A) and N 6-formyladenosine (f 6A), in a
stepwise manner (Figure 1c) (172); this pro-
cess is similar to the oxidation of 5mC to
5hmC and then 5fC by the TET proteins.
hm6A and f 6A are relatively stable under phys-
iological conditions, with a half-life of ∼3 h,
and can be detected in mammalian cells (172).
These new RNA modifications, introduced
by the demethylase, may add to the dynam-
ics of reversible RNA methylation–dependent
regulation.

Transcriptome-wide m6A distribution in
mice and humans has been determined using
antibody-based profiling approaches (170, 171,

175). The sequencing results revealed that m6A
is preferentially enriched around stop codons,
in 3′UTRs, and within long internal exons
and that its distribution is dynamically modu-
lated throughout development. m6A in mRNA
may affect mRNA splicing, trafficking, transla-
tion, and stability (5, 17). Future studies will
focus on the fundamental roles of m6A and
its dynamic regulation in specific biological
contexts.

PERSPECTIVES

DNA and RNA molecules carry sequence
information to guide downstream events,
including transcription and translation. Such
information determines not only what products
(RNAs or proteins) to make, but also (in part)
how much of the products to make. To increase
the diversity of regulation so that organisms
can cope with environmental and develop-
mental challenges, cells have developed other
regulatory mechanisms, including methylation
on both DNA and RNA. Although DNA and
RNA methylation had been regarded as a rela-
tively stable modification, the finding that both
DNA and RNA methylation can be reversed by
oxidation reactions has opened the door to an
understanding of DNA and RNA methylation
dynamics. Studies performed during the past
5 years have not only revealed enzymes involved
in DNA and RNA demethylation, but also pro-
vided many new technologies to perform high-
resolution mapping of the various modified
bases. With these tools in hand, future studies
will reveal many more exciting insights into
molecular mechanisms and biological func-
tions of the dynamic methylation of DNA and
RNA.

SUMMARY POINTS

1. 5mC in DNA and m6A in mRNA carry important regulatory information. Active removal
of these modifications is initiated by the AlkB-like Fe(II)/αKG-dependent dioxygenases.
Specifically, TET proteins can oxidize 5mC to generate 5hmC, 5fC, and 5caC; FTO
and ALKBH5 can oxidatively reverse m6A methylation in mRNA.
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2. hm6A and f 6A are short-lived intermediates formed from FTO-mediated m6A oxidation
and can spontaneously resolve within hours to achieve demethylation. However, 5hmC,
5fC, and 5caC are quite stable under physiological conditions. These bases can be grad-
ually removed by passive dilution. Alternatively, 5fC and 5caC can be actively reverted
to unmodified cytosine through TDG-initiated BER.

3. Various technologies have been developed for genome-wide mapping of 5mC oxidation
derivatives.

FUTURE ISSUES

1. Both AM-PD and AM-AR take place in different biological contexts. Although AM-PD
is involved mainly in global DNA demethylation during preimplantation development
and PGC reprogramming, AM-AR is probably involved in locus-specific demethylation
in response to environmental stimuli, such as nuclear hormone and growth factors (176–
178). Future studies are needed to reveal the mechanistic details of these two types of
TET-mediated demethylation pathways.

2. In addition to the TET/TDG/BER pathway, is there another enzymatic pathway for
AM-AR? Does a 5caC decarboxylase exist? Can DNMTs directly remove the oxidized
5-substituents of the 5mC derivatives?

3. How is the processivity of TET-mediated 5mC oxidation regulated? Why does the
oxidation reaction mostly stall at 5hmC? Detailed kinetics analyses of TET proteins may
help address these issues.

4. In preimplantation development and PGC reprogramming, some parts of the genome
are resistant to demethylation. What is the underlying mechanism, and how are the
resistant regions selected?

5. What are the roles of 5hmC, 5fC, and 5caC as epigenetic modifications, and are there
specific proteins that bind and interpret them?

6. Although TET proteins are present in all metazoans with 5mC in their genomes, oxida-
tion of 5mC is not detected in zebrafish during early embryogenesis. What is the role of
TET proteins in zebrafish? Understanding the functions of TET proteins in nonmam-
malian organisms may provide evolutionary insight into the role of dynamic regulation
of DNA methylation.

7. What is the biological function of m6A in mRNA, and how is it regulated?
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