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SUMMARY

Mammalian oocytes have the ability to reset the tran-
scriptional program of differentiated somatic cells
into that of totipotent embryos through somatic cell
nuclear transfer (SCNT). However, the mechanisms
underlying SCNT-mediated reprogramming are
largely unknown. To understand the mechanisms
governing chromatin reprogramming during SCNT,
we profiled DNase I hypersensitive sites (DHSs) in
donor cumulus cells and one-cell stage SCNT em-
bryos. To our surprise, the chromatin accessibility
landscape of the donor cells is drastically changed
to recapitulate that of the in vitro fertilization (IVF)-
derived zygotes within 12 hr. Interestingly, this DHS
reprogramming takes place even in the presence of
a DNA replication inhibitor, suggesting that SCNT-
mediated DHS reprogramming is independent of
DNA replication. Thus, this study not only reveals
the rapid and drastic nature of the changes in chro-
matin accessibility through SCNT but also estab-
lishes a DNA replication-independent model for
studying cellular reprogramming.

INTRODUCTION

Among the currently available systems for cell fate reprogram-

ming, somatic cell nuclear transfer (SCNT) is the only one

capable of reprogramming terminally differentiated cells to a toti-

potent state (Jullien et al., 2011; Mitalipov andWolf, 2009). SCNT

therefore provides an excellentmodel for understanding how cell

memory can be fully reprogrammed to generate totipotent cells,

and thus can provide important clues on how to improve other

reprogramming systems. However, despite more than 50 years
Ce
This is an open access article under the CC BY-N
after the first successful cloning by SCNT (Gurdon, 1962), the

molecular mechanisms underlying SCNT-mediated reprogram-

ming are almost completely unknown.

Reprogramming requires change to the chromatin, epige-

netic, and transcriptional landscapes of somatic cells. Many

studies have been performed to characterize these changes

during the induced pluripotent stem cell (iPSC) reprogramming

process. These studies used different assays including

RNA sequencing (RNA-seq), chromatin immunoprecipitation

sequencing (ChIP-seq), assays for transposase-accessible

chromatin using sequencing (ATAC-seq), Hi-C, and prote-

omics analyses (Hussein et al., 2014; Knaupp et al., 2017;

Koche et al., 2011; Krijger et al., 2016; Li et al., 2017; Sridharan

et al., 2013; Stadhouders et al., 2018). The studies revealed

the dynamic nature of the chromatin, epigenetics, and tran-

scriptome during the iPSC generation process and identified

important factors and molecular events that facilitate or

impede the reprogramming process. While such multi-dimen-

sional analyses have been applied to the iPSC reprogramming

system, only transcriptome analyses have been performed for

SCNT reprogramming (Chung et al., 2015; Hormanseder et al.,

2017; Inoue et al., 2015; Matoba et al., 2014). Although these

studies revealed that a donor cell transcriptional program is

largely reprogrammed to an embryonic program by the time

of zygotic genome activation (ZGA), with the exception of re-

programming-resistant regions (Chung et al., 2015; Matoba

et al., 2014), its molecular basis is still unknown and further

study of the chromatin landscape changes during the reprog-

ramming process is necessary.

Chromatin accessibility is a good indicator of transcriptional

regulatory elements and can serve as a predictor of gene tran-

scription activity. It can be identified genome-wide by DNase

I sequencing or ATAC-seq (Boyle et al., 2008; Buenrostro et al.,

2013). Recent refinements to these techniques have allowed

the profiling of the open chromatin landscape using limited num-

ber of cells by low-input DNase I sequencing (liDNase-seq) or at
ll Reports 23, 1939–1947, May 15, 2018 ª 2018 The Authors. 1939
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Figure 1. Rapid Reprogramming of Donor Cell Chromatin Accessibility in SCNT

(A) Schematic illustration of the experimental design for studying the chromatin accessibility dynamics in SCNT and that of the paternal pronucleus from in vitro-

fertilized (IVF) zygotes. The collected samples for liDNase-seq analysis are shown inside dotted boxes.

(B) PCA of the genome-wide DHS profile of the cumulus, IVF(Pat), and one-cell SCNT samples. Each dot represents one sample.

(C) Heatmap showing the DHSs clustered according to their combinatorial enrichment in cumulus, one-cell SCNT, and IVF(Pat) samples. Each row represents a

locus (DHS center ± 5 kb), and the red gradient color indicates the liDNase-seq signal intensity. OO, open in cumulus cells, SCNT, and IVF(Pan); OC, open in

cumulus cells and closed in SCNT and IVF(Pat); rOC, open in cumulus cells and closed in IVF(Pat), but failed to be closed in SCNT; rCO, closed in cumulus cells

and open in IVF(Pat), but failed to be opened in SCNT; CO, closed in cumulus cells and open in IVF(Pat) and SCNT.

(D) Genome browser views showing the normalized coverage (per million mapped reads) at representative loci of the different DHS categories.

See also Figure S1.
the single-cell level by ATAC-seq (Buenrostro et al., 2015; Jin

et al., 2015; Lu et al., 2016), thereby facilitating the study of chro-

matin accessibility in mouse preimplantation embryos (Inoue

et al., 2017; Lu et al., 2016; Wu et al., 2016). In this work, we

used liDNase-seq to study chromatin accessibility changes dur-

ing SCNT reprogramming, which revealed the quick and DNA

replication-independent nature of the reprogramming process.
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RESULTS AND DISCUSSION

Fast DNase I Hypersensitive Site Reprogramming upon
SCNT
To understand how the chromatin accessibility of somatic donor

cells is reprogrammed to that of the totipotent one-cell embryo,

we attempted to generate the DNase I hypersensitive site (DHS)
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map of SCNT one-cell embryos. To this end, we collectedmouse

cumulus cells to serve as somatic donor cells and performed

SCNT. Twelve hours post-activation (hpa), pseudopronuclei

were isolated from SCNT one-cell embryos for liDNase-seq (Fig-

ure 1A) with biological duplicates for both the donor cells and

one-cell SCNT embryos (Figures S1A and S1B). Since sperm

chromatin is reprogrammed under physiological conditions

upon fertilization (Inoue et al., 2017), we used the DHS map of

paternal pronuclei (Pat) of 12 hr post-fertilization (hpf) zygotes

as a control (Figure 1A). Using stringent criteria for peak calling

and reproducibility (irreproducibility discovery rate [IDR] < 0.05,

mean reads per kilobase million [RPKM] > 2, RPKM in all repli-

cate > 1, sex chromosomes were excluded), we identified

23,353, 3,005, and 3,610 DHSs in donor cumulus cells, SCNT

one-cell embryo, and Pat, respectively (Table S1). Principal-

component analysis (PCA) indicates that the overall DHS land-

scape of SCNT embryos is similar to that of Pat (Figure 1B),

suggesting that SCNT-mediated reprogramming of chromatin

accessibility is largely complete by 12 hr after activation.

To closely examine the DHS dynamics, we classified the de-

tected DHSs into five groups using the following criteria (3-fold

difference between DHS-negative and -positive categories,

mean RPKM > 2 and RPKM in all replicates > 1 in DHS-positive

categories). Groups 1 to 5, respectively, represent DHSs de-

tected in all samples (open to open [OO], n = 3,092), those only

detected in cumulus cells (open to closed [OC], n = 14,924),

those detected in both cumulus and SCNT samples (resistant

to open to closed [rOC], n = 524), those detected in both

SCNT and in vitro fertilization (IVF) (Pat) (closed to open [CO],

n = 179), and those specifically detected in IVF(Pat) (resistant

to closed to open [rCO], n = 262) (Figures 1C, 1D, and S1C).

The great majority of DHSs were in the OC category (78.6%; Fig-

ure 1C), suggesting that SCNT-mediated DHS reprogramming is

accompanied with a global loss of DHSs.

The DHS categories show an interesting genomic distribution,

among the non-reprogrammed DHSs, the majority of OO

(87.8%) and rOC (66.4%) categories are located in promoters

(transcription start site [TSS] ± 1 kb) (Figure 2A), while only

11.5% of the rCO category are located near promoter regions.

In contrast, the majority of reprogrammed DHSs, the OC

(74.2%) and CO (87.7%) categories, are located outside the pro-

moter region (Figure 2A). These results suggest that distal regu-

latory elements are prone to be reprogrammed upon SCNT,

while failure to close accessible somatic promoters or to open

distal regulatory regions required for differentiation program

may be the major reprogramming barriers. This observation is

similar to recent ATAC-seq analysis of chromatin reprogram-
Figure 2. Transcription Factor Network Switch Likely Accompanies DH

(A) Bar graph showing the genomic distribution of the different DHS categories.

located in promoters, exons, or introns are labeled as intergenic.

(B) Bar plot showing the top ten enriched pathways of OO- or OC-associated ge

(C) Averaged H3K9me3 ChIP-seq signal profile normalized to that of the input in

(D) Dot plot showing the enriched de novo TFs motifs (x axis) in the different DHS

novo TF motif, and the gradient red color indicates the p value enrichment. The n

(E and F) TFs with binding motif enriched in the OC (E) and CO (F) DHSs and th

embryos.

See also Figure S2.
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ming, which demonstrated that accessible chromatin at pro-

moter regions is relatively stable during transcription factor

(TF)-mediated iPSC generation (Knaupp et al., 2017; Li et al.,

2017). Biological pathway and gene ontology (GO) enrichment

analysis of the genes associated with OO andOCDHSs revealed

that the OO-associated genes are enriched in ubiquitous cellular

functions, such as cell cycle and DNA replication, while OC-

associated genes are enriched in specific somatic cell programs

such as angiogenesis and HIF1-alpha network (Figures 2B, S2A,

and S2B). No specific GO or pathway enrichment in the other

DHS categories was found (data not shown). These data suggest

that SCNT reprogramming involves a specific loss of somatic cell

memory while maintaining ubiquitous cellular functions.

It has been shown that H3K9me3 in donor cells functions as an

epigenetic barrier preventing SCNT-mediated reprogramming

(Chung et al., 2015; Matoba et al., 2014). Thus, we hypothesized

that reprogramming-resistant regions, particularly the rCO cate-

gory, should be enriched for H3K9me3 in donor cells and SCNT

embryos. Analysis of a public H3K9me3 ChIP-seq dataset in

cumulus cells and SCNT two-cell embryos (Liu et al., 2016)

indeed revealed that H3K9me3 is specifically enriched in rCO

sites in cumulus cells and SCNT two-cell embryos (Figure 2C).

This result provides another piece of evidence supporting the

role of H3K9me3 in preventing SCNT-mediated reprogramming.

TF Network Switch Likely Accompanies DHS
Reprogramming
Data presented in Figure 2C indicate that OC loci are devoid of

H3K9me3 despite lack of chromatin accessibility in SCNT em-

bryos. This observation suggests that global loss of DHSs at

the OC loci is not due to gain of H3K9me3 but by the displace-

ment of TFs from the transplanted somatic cell chromatin. To

assess this possibility, we performed TF motif enrichment anal-

ysis for each DHS category (p value < 0.001, fragments per kilo-

base of transcript per million mapped reads [FPKM] > 1 in

cumulus, SCNT, or IVF, and at least 2-fold enrichment compared

to background) (Figure 2D). Interestingly, we found that 46.7%of

the OC DHSs contain the Fra1 binding motif (Figure 2E), which

does not show enrichment in any other DHS category (Figures

2D and 2E). Fra1 is known to regulate the specific transcriptional

program in cumulus cells (Sharma and Richards, 2000) and is

very lowly expressed in oocytes (Xue et al., 2013) or one-cell

SCNT and IVF embryos (Matoba et al., 2014) (Figure 2E). Similar

expression pattern was also observed for Sox5, a TF also with

binding motif enriched in the OC loci (Figure 2E). Thus, lack of

Fra1 and Sox5 binding to chromatin in SCNT embryos at least

partly explains the dramatic loss of DHS in the OC category.
S Reprogramming

DHS peaks within TSS ± 1 kb are considered promoter DHS, and those not

nes using GREAT enrichment (McLean et al., 2010).

cumulus and two-cell stage SCNT embryos in a DHS ± 2.5-Mb window.

categories (y axis). Circle size represents the proportion of DHS having the de

ames of TFs with motif enriched in the different DHS categories are indicated.

eir relative expression levels in donor cells, oocytes, one-cell SCNT, and IVF
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These observations suggest that loss of donor cell-specific TF

occupancy may contribute to the global loss of DHSs in SCNT

embryos.

In addition to the large number of OC category, which is likely

responsible for the loss of donor cell chromatin identity, the other

reprogrammed CO category could be important for acquiring

totipotency. Analysis of the CO loci identified NFY as the most

enriched motif (Figures 2D and 2F). Since Nfya, a subunit of

the NFY complex, has been shown to be involved in ZGA (Lu

et al., 2016), it is possible that the NFY complex also contributes

to SCNT-mediated DHS reprogramming. Indeed, Nfya is ex-

pressed at a relatively lower level in cumulus cells while higher

in one-cell SCNT and IVF embryos (Figure 2F). Another inter-

esting finding from the motif enrichment analysis comes from

the rOC category. Although NFYmotif was enriched in rOC cate-

gory as in the CO category, we found that the AP-1(Jun) and Elf1

motifs were exclusively enriched in this category (Figures 2D and

S2C). Interestingly, it has been recently shown that chromatin

binding of AP-1 in differentiated cells functions as a reprogram-

ming barrier preventing iPSC generation (Li et al., 2017). This

suggests that failure of specific somatic cell TFs to dissociate

from chromatin can also be a barrier in SCNT reprogramming.

Taken together, our data support the notion that the donor

cell-specific TF network is quickly lost and a new zygotic TF

network is established upon SCNT within 12 hr.

Loss of Donor Cell DHSs Is Associated with
Downregulation of Somatic Cell Transcription Program
To understand the consequences of DHS reprogramming, we

asked whether the OC loci maintain inaccessible states or

become accessible later during preimplantation development.

To this end, we analyzed publicly available liDNase-seq and

ATAC-seq datasets at each preimplantation embryo develop-

ment stages (Lu et al., 2016; Wu et al., 2016). Interestingly,

both datasets consistently revealed that most of the OC loci

maintain their inaccessibility throughout preimplantation devel-

opment (Figure 3A). However, a small number of OC loci regain

accessibility at the eight cell-to-morula stages in the liDNase-

seq dataset (morula/cumulus > 3, RPKM > 1, and mean

RPKM > 2 in morula) and at the inner cell mass (ICM) stage in

the ATAC-seq dataset (Figure 3A). This chromatin accessibility

dynamics is strikingly different from the OO loci, which remain

accessible throughout preimplantation development (Figure 3B).

These data suggest that, once lost upon SCNT, the majority of

DHSs do not reappear during preimplantation development.

To gain insight into the functional significance of the loss of

DHSs, we examined whether OC-associated genes are tran-

scriptionally turned off in preimplantation embryos. To this end,
Figure 3. Loss of Donor Cell DHSs Is Associated with Downregulation

(A and B) Heatmap showing the dynamics of OC (A) and OO (B) DHSs during prei

Each row represents a locus (DHS center ± 5 kb), and the red and blue gradient co

DHSs were separated into two groups based on whether they reappear at the mo

embryos). Peaks were ordered based on the signal intensity in cumulus cells.

(C) Averaged gene expression levels of the OO- or OC-associated genes (TSS

calculated using the Wilcoxon rank sum test.

(D) Averaged gene expression levels of the CO-associated genes (TSS ± 10 kb) in c

the paired t test.

See also Figure S3.
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we analyzed RNA-seq datasets of preimplantation embryos

(Wu et al., 2016) and cumulus cells (Matoba et al., 2014).

Comparative analyses between OC- and OO-associated genes

(DHS within TSS ± 10 kb) (Tables S2 and S3) revealed that the

gene expression level of OC-associated genes (median, �1

FPKM) is significantly lower than that of OO-associated genes

(median,�4 FPKM) in all stages (Figure 3C). These data indicate

that the OC-associated genes are expressed at a higher level in

cumulus cells than in preimplantation embryos. A similar result

was obtained when analyzing the genes harboring promoter

DHSs (TSS ± 1 kb) (Figure S3A), excluding the possibility that

these results could account for the difference in genomic distri-

bution between OC and OO DHSs (Figure 2A). This observation

was further confirmed by comparing the expression levels of the

OC-associated genes between cumulus and preimplantation

embryos (Figure S3B). Taken together, these results suggest

that SCNT-mediated loss of DHS may be required for turning

off the somatic cell transcriptional program.

We also analyzed the expression of CO-associated genes.

Interestingly, this group of genes exhibits an expression pattern

that peaks at the two-cell stage consistent with ZGA (Figure 3D).

Indeed, 12 out of the 52 CO-proximal genes (23.08%) are acti-

vated during the one-cell to two-cell transition (FC > 3, mean

FPKM in two cell > 2) (Figure S3C).

DHS Reprogramming in SCNT Is Independent of DNA
Replication
SCNT embryos complete the first round of DNA replicationwithin

12 hpa. Previous studies indicated that DNA replication is

required for somatic cell reprogramming in a heterokaryon-

mediated reprogramming setting (Tsubouchi et al., 2013). Given

that TF-mediated iPSC generation generally takes 1 week, DNA

replicationmust be required. To determine whether DNA replica-

tion is also required for SCNT-mediated DHS reprogramming,

we treated SCNT embryos with a potent DNA replication inhibi-

tor, aphidicolin, from 4 to 12 hpa (Figure 4A). We first confirmed

that aphidicolin treatment effectively blocked DNA replication in

SCNT embryos using a bromodeoxyuridine (BrdU) incorporation

assay (Figure 4B).We then collected pseudopronuclei from aphi-

dicolin-treated SCNT embryos at 12 hpa and performed

liDNase-seq with biological duplicates (Figure S4A). Hierarchical

clustering and PCA revealed that the DHS landscape of aphidi-

colin-treated SCNT embryos is much more similar to those of

the non-treated SCNT and IVF(Pat) than to that of the cumulus

cells (Figures 4C and S4B). A closer examination of the reprog-

rammed DHSs (CO and OC, Figure 1C) showed a limited effect

of aphidicolin treatment on DHS reprogramming compared to

that of the change from cumulus to SCNT (Figures 4D, S4C,
of Somatic Cell Transcription Program

mplantation development analyzed by liDNase-seq (left) and ATAC-seq (right).

lors represent the liDNase-seq and ATAC-seq signal intensity, respectively. OC

rula stage (FC[morula/cumulus] > 3, RPKM > 1, and mean RPKM > 2 in morula

± 10 kb) in cumulus cells and preimplantation embryos. The p values were

umulus cells and preimplantation embryos. The p values were calculated using
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Figure 4. DHS Reprogramming in SCNT Is

Independent of DNA Replication

(A) Schematic illustration of the experiment to

examine the effect of aphidicolin on SCNT-medi-

ated DHS reprogramming.

(B) Representative images of SCNT one-cell em-

bryos immunostained with BrdU and lamin B1

antibodies. No BrdU signal was detected in aphi-

dicolin-treated embryos. The number of SCNT

embryos exhibiting the staining pattern and the

total number of embryos analyzed are shown,

respectively. Scale bar: 20 mm.

(C) PCA of the genome-wide DHS profile of

cumulus, IVF(Pat), SCNT, and aphidicolin-treated

SCNT samples. Each dot represents an indepen-

dent sample.

(D) Heatmap showing liDNase-seq enrichment

signal in the OC and CO DHSs after aphidicolin

treatment. Each row represents a locus (DHS

center ± 5 kb), and the red gradient color indicates

the signal intensity.

See also Figure S4.
and S4D). These results suggest that SCNT-mediated DHS re-

programming is largely DNA replication independent.

By profiling and comparing the chromatin accessibility of

donor cells, SCNT, and IVF one-cell embryos, we revealed that

DHS reprogramming is largely completed within 12 hr and that

this reprogramming takes place in a DNA replication-indepen-

dent manner. This appears to be different from the cell fusion-

mediated reprogramming and the TF-mediated iPSC reprog-

ramming systems that require DNA replication or cell division,

suggesting that SCNT reprogramming might be mechanistically

different. The fast DHS reprogramming without a single-cell divi-

sion allows the separation of reprogramming events from devel-

opmental processes such as major ZGA, which does not take

place until the two-cell stage (Aoki et al., 1997). This finding is

important as it identified the time window to which future mech-

anistic studies should be focused on. The global loss of DHSs is

likely due to the displacement of TFs from the transplanted so-

matic cell chromatin (Figure 2). Given that most TFs except the

pioneer factors are believed to be displaced from chromatin at

the mitotic metaphase (Iwafuchi-Doi and Zaret, 2014), the

SCNT-mediated loss of DHSs might be triggered by premature

chromosome condensation (PCC) of donor chromatin that is
Cell R
induced by M-phase-promoting factors

in oocyte cytoplasm soon after microin-

jection. The large amount of TFs stored

in the oocyte cytoplasm, which is about

1,000 times larger than most somatic

cells in volume (diameter, 70–80 mm in

oocyte versus 5–10 mm in somatic cells),

may explain the fast and drastic replace-

ment of TFs in donor somatic nuclei.

Once donor cell DHSs are lost upon

SCNT, the majority of these loci remain

inaccessible and their associated genes

are transcriptionally silenced during pre-

implantation development (Figure 3). TF
motif analyses revealed that some maternal factors might be

important for SCNT-mediated DHS reprogramming (Figure 2).

Future studies should test whether they are required for this pro-

cess using oocyte-specific knockout approaches.

EXPERIMENTAL PROCEDURES

Collection of Mouse Oocytes

All animal studies were performed in accordance with guidelines of the Institu-

tional Animal Care and Use Committee of Harvard Medical School. The pro-

cedures of oocyte collection and IVF were described previously (Inoue et al.,

2017). Themouse strain used in this study was B6D2F1/J (BDF1) (The Jackson

Laboratory; 100006).

SCNT

The procedures of SCNT using cumulus cells as donors were described pre-

viously (Matoba et al., 2011). Briefly, MII oocytes were collected from supero-

vulated 8- to 11-week-old BDF1 females. Cumulus cells were removed from

oocytes by treatment with 300 U/mL bovine testicular hyaluronidase (Calbio-

chem). MII oocytes were enucleated in HEPES-buffered KSOM containing

7.5 mg/mL cytochalasin B (CB) (Chalbiochem; 250233). Nuclei of cumulus cells

were injected into the enucleated oocytes using a Piezo-driven micromanipu-

lator (Primetech). After 1-hr incubation in KSOM, SCNT oocyteswere activated

by Ca-free KSOM containing 3 mM strontium chloride (SrCl2) and 5 mg/ml CB

for 1 hr and further cultured in KSOMwith CB for 4 hr. At 5 hpa, embryos were
eports 23, 1939–1947, May 15, 2018 1945



washed in KSOM. To block DNA replication, embryos were transferred to

KSOM containing 3 mg/mL aphidicolin (Sigma-Aldrich) at 4 hpa until sample

collection at 12 hpa.

Whole-Mount Immunostaining

The procedure for BrdU labeling was described previously (Shen et al.,

2014). Briefly, SCNT embryos were cultured in 100 mM BrdU from 5 hpa

and fixed with 3.7% paraformaldehyde for 20 min at 9 hpa. After permeabi-

lization with 0.5% Triton X-100 for 15 min, embryos were treated with 4 N HCl

for 30 min followed by neutralization with 100 mM Tris-HCl (pH 8.0) for

15 min. The primary antibodies against BrdU (1/200; Roche Diagnostic)

and lamin B1 (1/2,000; Santa Cruz; sc-6217) were incubated for 1 hr in 1%

BSA/PBS at room temperature. The secondary antibodies used were Alexa

Flour 488 donkey anti-mouse IgG (Life Technologies) and Alexa Flour 568

donkey anti-goat IgG. The embryos were mounted on a glass slide in Vecta-

shield anti-bleaching solution with DAPI (Vector Laboratories). Fluorescence

was detected under Zeiss LSM800.

liDNase-Seq

The procedures of liDNase-seq were described previously (Inoue et al., 2017).

Data Analysis of liDNase-Seq

Reads were trimmed then mapped to the mm9 genome. PCR duplicates and

multi-mapped reads were removed. The IDR method was used to select repli-

cable DHS (Li et al., 2011). DHS detected in cumulus, one-cell SCNT, paternal

pronuclei, and the SCNT+aphidicolin were merged and used in the down-

stream analysis.

Additional Public Data

Publicly available ATAC-seq data (Wu et al., 2016), RNA-seq data (Matoba

et al., 2014; Wu et al., 2016; Xue et al., 2013), and H3K9me3 ChIP-seq data

(Liu et al., 2016) were mapped to the mm9 genome (Supplemental Experi-

mental Procedures).

Statistical Methods

DHS IDR was estimated using the IDR method. Motif p values were calculated

using HOMER (Heinz et al., 2010) with background regions having similar GC-

bias. GO and pathway p values were estimated using the binomial test in

GREAT. Wilcoxon rank sum test (Figures 3C and S3A), paired t test (Figures

3D and S3B), and Pearson’s correlation were done using R (http://www.

r-project.org/).

DATA AND SOFTWARE AVAILABILITY

The accession number for the datasets reported in this study (summarized in

Table S4) is GEO: GSE110851.
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